Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T23:51:23.725Z Has data issue: false hasContentIssue false

On Alteration Rate Renewal Stage of Nuclear Waste Glass Corrosion

Published online by Cambridge University Press:  24 January 2020

Michael I. Ojovan*
Affiliation:
Department of Materials Science and Engineering, The University of Sheffield, UK; m.ojovan@sheffield.ac.uk
Get access

Abstract:

The three generically accepted stages of glass corrosion are reviewed with focus on final stage termed alteration rate renewal (or resumption) stage when the glass may re-start corroding with the rate similar to that at the initial stage. It is emphasized that physical state and physical changes that occur in the near-surface layers can readily lead to an effective increase of leaching rate which is similar to alteration rate renewals. Experimental data on long-term (during few decades) corrosion of radioactive borosilicate glass K26 designed to immobilize high-sodium operational NPP radioactive waste evidence on resumption-like effects of radionuclides (137,134Cs) leaching. The cause of that was however related not to chemical changes in the leaching environment but rather to physical state of glass surface due to formation of small cracks and new pristine glass areas in contact with water.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marra, J.C., Ojovan, M.I.. Vitrification of Radioactive Wastes. Glass International, 37 (4), 19-21 (2014).Google Scholar
Ojovan, M.I., Lee, W.E., Kalmykov, S.N.. An introduction to nuclear waste immobilisation. Third edition, Elsevier, Amsterdam, 497 pp. (2019).Google Scholar
Gin, S., Jollivet, P., Tribet, M., Peuget, S., Schuller, S.. Radionuclides containment in nuclear glasses: an overview. Radiochim. Acta, 105 (11): 927959 (2017).CrossRefGoogle Scholar
Gin, S. , Abdelouas, A., Criscenti, L., Ebert, W., Ferrand, K., Geisler, T., Harrison, M., Inagaki, Y., Mitsui, S., Mueller, K., Marra, J., Pantano, C., Pierce, E., Ryan, J., Schofield, J., Steefel, C., Vienna, J.. An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today, 16, 243-248 (2013).CrossRefGoogle Scholar
Jantzen, C.M.. Historical development of glass and ceramic waste forms for high level radioactive waste. In: Ojovan, M. Handbook of Advanced Radioactive Waste Conditioning Technologies. Woodhead, Cambridge. 159-172 (201).Google Scholar
Jantzen, C.M.. Development of glass matrices for HLW radioactive wastes. Ibid, 230-292 (2011).Google Scholar
Diaz-Maurin, F., Ewing, R.C.. Mission Impossible? Socio-Technical Integration of Nuclear Waste Geological Disposal Systems. Sustainability, 10, 4390 (2018).CrossRefGoogle Scholar
Bacon, D., Pierce, E.. Development of long-term behaviour models. In: Ojovan, M. Handbook of Advanced Radioactive Waste Conditioning Technologies. Woodhead, Cambridge, 433-454 (2011).CrossRefGoogle Scholar
Vienna, J., Ryan, J., Gin, S., Inagaki, Y.. Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glass. International Journal of Applied Glass Science , 4 (4), 283-294 (2013).CrossRefGoogle Scholar
Gin, S.. Open scientific questions about nuclear glass corrosion. Procedia Materials Science, 7, 163171 (2014).CrossRefGoogle Scholar
Frankel, G.S., Vienna, J.D., Lian, J., Scully, J.R., Gin, S., Ryan, J.V., Wang, J., Kim, S.H., Windl, W., Du, J.. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. Npj Materials Degradation, 15, 1-17 (2018).Google Scholar
Hand, R.J.. Chemical durability of nuclear waste glass. ICG Summer School on Glass. Montpelier, 8-12.07.2019Google Scholar
Poluektov, P.P., Schmidt, O.V., Kascheev, V.A., Ojovan, M.I.. Modelling aqueous corrosion of nuclear waste phosphate glass, J. Nucl. Mater. , 484, 357366 (2017).CrossRefGoogle Scholar
Ojovan, M.I., Pankov, A.S., Lee, W.E.. The ion exchange phase in corrosion of nuclear waste glasses. J. Nucl. Mater. , 358, 57-68 (2006).CrossRefGoogle Scholar
Ojovan, M.I., Lee, W.E.. About U-shaped Glass Corrosion Rate/pH Curves for Vitreous Nuclear Wasteforms. Innovations in Corrosion and Materials Science, 7 (1), 30-37 (2017).Google Scholar
McGrail, B.P., Bacon, D.H., Icenhower, J.P., Mann, F.M., Puigh, R.J., Schaef, H.T., Mattigod, S.V.. Near-field performance assessment for a low-activity waste glass disposal system: laboratory testing to modelling results. J. Non-Cryst. Solids, 298, 95-111 (2001).Google Scholar
Gin, S. et al. The controversial role of inter-diffusion in glass alteration. Chem. Geol. 440, 115123 (2016).10.1016/j.chemgeo.2016.07.014CrossRefGoogle Scholar
Gin, S, Jollivet, P, Fournier, M, Angeli, F, Frugier, P, Charpentier, T. Origin and consequences of silicate glass passivation by surface layers. Nat Commun., 6 :6360 (2015).CrossRefGoogle ScholarPubMed
Gin, S., Collin, M., Jollivet, P., Fournier, M., Minet, Y., Dupuy, L., Mahadevan, T., Kerisit, S., Du, J.. Dynamics of self-reorganization explains passivation of silicate glasses. Nat Commun., 9 (1): 2169 (2018).CrossRefGoogle ScholarPubMed
Newton, R.. Some Problems in the Dating of Ancient Glass by Counting the Layers in the Weathering Crust, Glass Technology, 7, (1), 2225 (1966).Google Scholar
Newton, R.G., Another unsolved problem concerning weathering layers, Glass Technol. 29 (2), 7879 (1988).Google Scholar
Geisler, T., Janssen, A., Scheiter, D., Stephan, T., Berndt, J., Putnis, A.. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism. J. Non-Cryst. Solids, 356, 14581465 (2010).CrossRefGoogle Scholar
Geisler, T., Nagel, T., Kilburn, M.R., Janssen, A., Icenhower, J.P., Fonseca, R.O.C., Grange, M., Nemchin, A.A.. The mechanism of borosilicate glass corrosion revisited. Geochimica et Cosmochimica Acta, 158, 112-129 (2015).CrossRefGoogle Scholar
Wang, Y., Jove-Colon, C.F., Kuhlman, K.L.. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals. Sci Rep., 6 :30256 (2016).CrossRefGoogle ScholarPubMed
Schalm, O., Anaf, W.. Laminated altered layers in historical glass: Density variations of silica nanoparticle random packings as explanation for the observed lamellae. J. Non-Cryst. Solids, 442, 116 (2016).CrossRefGoogle Scholar
Fournier, M., Gin, S., Frugier, P.. Resumption of nuclear glass alteration: state of the art. J. Nucl. Mater. 448, 348363 (2014).CrossRefGoogle Scholar
Fett T., T., Guin, J.P., Wiederhorn, S. M.Stresses in ion-exchange layers of sodalime-silicate glass. Fatigue Fract. Eng. Mater. Struct. 28, 507514 (2005).CrossRefGoogle Scholar
Neill, L.M., Gin, S., Ducasse, T., Echave, T.D., Fournier, M., Jollivet, P., Gourgiotis, A., Wall, N.A.. Various effects of magnetite on international simple glass (ISG) dissolution: implications for the long-term durability of nuclear glasses. Npj Mater. Degrad. 1, 1-11 (2017).CrossRefGoogle Scholar
Ojovan, N.V., Startceva, I.V., Barinov, A.S., Mokhov, A.V., Ojovan, M.I., Moebus, G.. Secondary phases on the surface of real vitrified radioactive waste disposed in a loamy soil. Mat. Res. Soc. Symp. Proc. 807, 139-144 (2004).CrossRefGoogle Scholar
Ojovan, M.I., Lee, W.E., Barinov, A.S., Startceva, I.V., Bacon, D.H., McGrail, B.P., Vienna, J.D.. Corrosion of low level vitrified radioactive waste in a loamy soil. Glass Technol., Eur. J. Glass Sci. Technol. A, 47 (2), 48-55 (2006).Google Scholar
Sobolev, I.A., Dmitriev, S.A., Lifanov, F.A., Kobelev, A.P., Stefanovsky, S.V., Ojovan, M.I.. Vitrification processes for low, intermediate radioactive and mixed wastes. Glass Technology, 46, 28-35 (2005).Google Scholar
Sobolev, I.A., Ojovan, M.I., Batykhnova, O.G., Ojovan, N.V., Scherbatova, T.D., Waste glass leaching and alteration under conditions of open site tests, Mater. Res. Soc. Symp. Proc. 465, 245252 (1997).CrossRefGoogle Scholar
Ojovan, M.I., Hand, R.J., Ojovan, N.V., Lee, W.E.. Corrosion of alkali-borosilicate waste glass K-26 in non-saturated conditions. J. Nucl. Mat. 340, 12-24 (2005).CrossRefGoogle Scholar
Ozhovan, M.I., Semenov, K.N., Determination of leaching factors and effective diffusion coefficients of radionuclides from the results of long term tests, At. Energy, 3 (1991) 257258.CrossRefGoogle Scholar
Ojovan, M.I.. Mass spectrometric evidencing on modified random network microstructure and medium range order in silicate glasses. J. Non-Cryst. Solids, 434, 71-78 (2016).CrossRefGoogle Scholar
Ren, M., Deng, L., Du, J.. Bulk, surface structures and properties of sodium borosilicate and boroaluminosilicate nuclear waste glasses from molecular dynamics simulations. J. Non-Cryst. Solids, 476, 87-94 (2017).CrossRefGoogle Scholar
Chinnam, R.K., Fossati, P.C.M., Lee, W.E.. Degradation of partially immersed glass: A new perspective. J. Nucl. Mat. 503, 56-65 (2018).CrossRefGoogle Scholar