Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T08:32:38.582Z Has data issue: false hasContentIssue false

On our Limited Understanding of Electrodeposition

Published online by Cambridge University Press:  04 December 2019

Aashutosh Mistry*
Affiliation:
Argonne National Laboratory, Lemont, Illinois 60439, United States
Venkat Srinivasan*
Affiliation:
Argonne National Laboratory, Lemont, Illinois 60439, United States
Get access

Abstract

The energy density of electrodeposition reactions makes them attractive for energy storage. Although its scientific inquiries nearly date back to the inception of electrochemistry, its behavior at microscopic dimensions (relevant to battery application) is mysteriously uncontrollable. We examine experimental reports of singular spatiotemporal evolutions with a hope to identify universality in deposition patterns. We conclude that a macroscopic mass transport instability cannot account for various growth morphologies and alludes to poorly understood materials interplay at smaller scales. We summarize representative characteristics of electrodeposition to encourage mechanistic investigations.

Type
Review Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S Batteries with High Energy Storage. Nat. Mater. 2012, 11 (1), 1929.CrossRefGoogle Scholar
Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of Lithium Growth Mechanisms in Liquid Electrolytes. Energy Environ. Sci. 2016, 9 (10), 32213229. https://doi.org/10.1039/C6EE01674J.CrossRefGoogle Scholar
Chen, K. H.; Wood, K. N.; Kazyak, E.; Lepage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes. J. Mater. Chem. A 2017. https://doi.org/10.1039/c7ta00371d.Google Scholar
Mullins, W. W.; Sekerka, R. F. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy. J. Appl. Phys. 1964. https://doi.org/10.1063/1.1713333.CrossRefGoogle Scholar
Sundström, L. G.; Bark, F. H. On Morphological Instability during Electrodeposition with a Stagnant Binary Electrolyte. Electrochim. Acta 1995. https://doi.org/10.1016/0013-4686(94)00379-F.CrossRefGoogle Scholar
Khoo, E.; Zhao, H.; Bazant, M. Z. Linear Stability Analysis of Transient Electrodeposition in Charged Porous Media: Suppression of Dendritic Growth by Surface Conduction. J. Electrochem. Soc. 2019. https://doi.org/10.1149/2.1521910jes.CrossRefGoogle Scholar
Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A. Failure Mechanism for Fast‐charged Lithium Metal Batteries with Liquid Electrolytes. Adv. Energy Mater. 2015, 5 (3).CrossRefGoogle Scholar
Shi, F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B.; Zhao, J.; Gong, Y.; Cui, Y. Strong Texturing of Lithium Metal in Batteries. Proc. Natl. Acad. Sci. U. S. A. 2017. https://doi.org/10.1073/pnas.1708224114.CrossRefGoogle ScholarPubMed
Sun, F.; Osenberg, M.; Dong, K.; Zhou, D.; Hilger, A.; Jafta, C. J.; Risse, S.; Lu, Y.; Markötter, H.; Manke, I. Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO 2 and Li/S Battery Systems: Investigated by Synchrotron X-Ray Phase Contrast Tomography. ACS Energy Lett . 2018. https://doi.org/10.1021/acsenergylett.7b01254.CrossRefGoogle Scholar
Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth. J. Phys. Chem. Lett. 2013. https://doi.org/10.1021/jz4003586.CrossRefGoogle ScholarPubMed
Fan, F. Y.; Carter, W. C.; Chiang, Y. Mechanism and Kinetics of Li2S Precipitation in Lithium–Sulfur Batteries. Adv. Mater. 2015, 27 (35), 52035209.CrossRefGoogle ScholarPubMed
Cheng, E. J.; Sharafi, A.; Sakamoto, J. Intergranular Li Metal Propagation through Polycrystalline Li6.25Al0.25La3Zr2O12 Ceramic Electrolyte. Electrochim. Acta 2017. https://doi.org/10.1016/j.electacta.2016.12.018.CrossRefGoogle Scholar
Bieker, G.; Winter, M.; Bieker, P. Electrochemical in Situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode. Phys. Chem. Chem. Phys. 2015, 17 (14), 86708679.CrossRefGoogle ScholarPubMed
Léger, C.; Elezgaray, J.; Argoul, F. Dynamical Characterization of One-Dimensional Stationary Growth Regimes in Diffusion-Limited Electrodeposition Processes. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 1998. https://doi.org/10.1103/PhysRevE.58.7700.Google Scholar
Monroe, C.; Newman, J. Dendrite Growth in Lithium/Polymer Systems a Propagation Model for Liquid Electrolytes under Galvanostatic Conditions. J. Electrochem. Soc. 2003, 150 (10), A1377A1384.CrossRefGoogle Scholar
Mistry, A.; Fear, C.; Carter, R.; Love, C. T.; Mukherjee, P. P. Electrolyte Confinement Alters Lithium Electrodeposition. ACS Energy Lett . 2019, 4 (1). https://doi.org/10.1021/acsenergylett.8b02003.CrossRefGoogle Scholar
Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett . 2017. https://doi.org/10.1021/acs.nanolett.6b04755.CrossRefGoogle ScholarPubMed
Liu, W.; Lin, D.; Pei, A.; Cui, Y. Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. J. Am. Chem. Soc. 2016. https://doi.org/10.1021/jacs.6b08730.CrossRefGoogle ScholarPubMed
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc. 2013, 135 (11), 44504456.CrossRefGoogle ScholarPubMed
Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y. The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nat. Commun. 2015. https://doi.org/10.1038/ncomms8436.Google ScholarPubMed
Fan, F. Y.; Chiang, Y.-M. Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition. J. Electrochem. Soc. 2017, 164 (4), A917A922.CrossRefGoogle Scholar
Viswanathan, V.; Thygesen, K. S.; Hummelshj, J. S.; Nrskov, J. K.; Girishkumar, G.; McCloskey, B. D.; Luntz, A. C. Electrical Conductivity in Li 2O 2 and Its Role in Determining Capacity Limitations in Non-Aqueous Li-O 2 Batteries. J. Chem. Phys. 2011. https://doi.org/10.1063/1.3663385.CrossRefGoogle Scholar
Aetukuri, N. B.; McCloskey, B. D.; Garciá, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating Additives Drive Solution-Mediated Electrochemistry and Enhance Toroid Growth in Non-Aqueous Li-O2 Batteries. Nat. Chem. 2015. https://doi.org/10.1038/nchem.2132.CrossRefGoogle Scholar
Radin, M. D.; Monroe, C. W.; Siegel, D. J. Impact of Space-Charge Layers on Sudden Death in Li/O2 Batteries. J. Phys. Chem. Lett. 2015. https://doi.org/10.1021/acs.jpclett.5b01015.CrossRefGoogle ScholarPubMed
Monroe, C.; Newman, J. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. J. Electrochem. Soc. 2005, 152 (2), A396A404.CrossRefGoogle Scholar
Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y. M. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Adv. Energy Mater. 2017. https://doi.org/10.1002/aenm.201701003.CrossRefGoogle Scholar
Lewis, J. A.; Cortes, F. J. Q.; Boebinger, M. G.; Tippens, J.; Marchese, T. S.; Kondekar, N.; Liu, X.; Chi, M.; McDowell, M. T. Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure. ACS Energy Lett . 2019. https://doi.org/10.1021/acsenergylett.9b00093.CrossRefGoogle Scholar
Barai, P.; Higa, K.; Srinivasan, V. Lithium Dendrite Growth Mechanisms in Polymer Electrolytes and Prevention Strategies. Phys. Chem. Chem. Phys. 2017. https://doi.org/10.1039/c7cp03304d.CrossRefGoogle ScholarPubMed
Maslyn, J. A.; Loo, W. S.; McEntush, K. D.; Oh, H. J.; Harry, K. J.; Parkinson, D. Y.; Balsara, N. P. Growth of Lithium Dendrites and Globules through a Solid Block Copolymer Electrolyte as a Function of Current Density. J. Phys. Chem. C 2018. https://doi.org/10.1021/acs.jpcc.8b06355.CrossRefGoogle Scholar
Gribble, D. A.; Frenck, L.; Shah, D. B.; Maslyn, J. A.; Loo, W. S.; Mongcopa, K. I. S.; Pesko, D. M.; Balsara, N. P. Comparing Experimental Measurements of Limiting Current in Polymer Electrolytes with Theoretical Predictions. J. Electrochem. Soc. 2019. https://doi.org/10.1149/2.0391914jes.CrossRefGoogle Scholar
Nagao, M.; Hayashi, A.; Tatsumisago, M. High-Capacity Li 2S-Nanocarbon Composite Electrode for All-Solid-State Rechargeable Lithium Batteries. J. Mater. Chem. 2012. https://doi.org/10.1039/c2jm16802b.CrossRefGoogle Scholar
Barai, P.; Higa, K.; Ngo, A. T.; Curtiss, L. A.; Srinivasan, V. Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries. J. Electrochem. Soc. 2019. https://doi.org/10.1149/2.0321910jes.CrossRefGoogle Scholar
Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chem. Mater. 2017. https://doi.org/10.1021/acs.chemmater.7b00931.CrossRefGoogle Scholar
Gerber, L. C. H.; Frischmann, P. D.; Fan, F. Y.; Doris, S. E.; Qu, X.; Scheuermann, A. M.; Persson, K.; Chiang, Y. M.; Helms, B. A. Three-Dimensional Growth of Li2S in Lithium-Sulfur Batteries Promoted by a Redox Mediator. Nano Lett . 2016. https://doi.org/10.1021/acs.nanolett.5b04189.CrossRefGoogle ScholarPubMed
Mistry, A. N.; Mukherjee, P. P. Electrolyte Transport Evolution Dynamics in Lithium-Sulfur Batteries. J. Phys. Chem. C 2018, 122 (32). https://doi.org/10.1021/acs.jpcc.8b05442.CrossRefGoogle Scholar
Bergner, B. J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P. R.; Janek, J. Understanding the Fundamentals of Redox Mediators in Li-O2 Batteries: A Case Study on Nitroxides. Phys. Chem. Chem. Phys. 2015. https://doi.org/10.1039/c5cp04505c.CrossRefGoogle ScholarPubMed
Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable Nickel-3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion. Science (80-. ). 2017. https://doi.org/10.1126/science.aak9991.Google Scholar
Ta, K.; See, K. A.; Gewirth, A. A. Elucidating Zn and Mg Electrodeposition Mechanisms in Nonaqueous Electrolytes for Next-Generation Metal Batteries. J. Phys. Chem. C 2018. https://doi.org/10.1021/acs.jpcc.8b00835.CrossRefGoogle Scholar
Wang, D.; Gao, X.; Chen, Y.; Jin, L.; Kuss, C.; Bruce, P. G. Plating and Stripping Calcium in an Organic Electrolyte. Nat. Mater. 2017, 17, 16.CrossRefGoogle Scholar
Ta, K.; Zhang, R.; Shin, M.; Rooney, R. T.; Neumann, E. K.; Gewirth, A. A. Understanding Ca Electrodeposition and Speciation Processes in Nonaqueous Electrolytes for Next-Generation Ca-Ion Batteries. ACS Appl. Mater. Interfaces 2019. https://doi.org/10.1021/acsami.9b04926.CrossRefGoogle ScholarPubMed
Rajput, N. N.; Qu, X.; Sa, N.; Burrell, A. K.; Persson, K. A. The Coupling between Stability and Ion Pair Formation in Magnesium Electrolytes from First-Principles Quantum Mechanics and Classical Molecular Dynamics. J. Am. Chem. Soc. 2015. https://doi.org/10.1021/jacs.5b01004.CrossRefGoogle ScholarPubMed
Samuel, D.; Steinhauser, C.; Smith, J. G.; Kaufman, A.; Radin, M. D.; Naruse, J.; Hiramatsu, H.; Siegel, D. J. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride. ACS Appl. Mater. Interfaces 2017. https://doi.org/10.1021/acsami.7b15547.CrossRefGoogle ScholarPubMed