Skip to main content
×
Home
    • Aa
    • Aa

Optical approaches to improving perovskite/Si tandem cells

  • Haejun Chung (a1), Xingshu Sun (a1) and Peter Bermel (a1)
Abstract
ABSTRACT

Recently, metal-halide perovskites have demonstrated an extraordinarily rapid advance in single junction cell efficiency to over 20%, while still offering potentially low costs. Since the bandgap is larger than the ideal single-junction value, perovskite-based tandem cells can theoretically offer even higher efficiencies. Instead, however, the record tandem cell performance in experiments to date has come in slightly below that of record single junctions, although slightly higher than the same single junctions. In this work, we consider both how this disconnect can be explained quantitatively, and then devise experimentally feasible, variance-aware approaches to address them. The first stage of our approach is based on reconfiguring dielectric front coatings to help reduce net reflected power and balance junction currents by reshaping the reflection peaks. This method could be applied to post-fabrication stage of perovskite/c-Si tandem cells, and also applicable to cell and module level structures. In the second stage of our approach, we can almost entirely eliminate Fresnel reflection by applying a conformal periodic light trapping structure. In the best case, a short circuit current (Jsc) of 18.0 mA/cm2 was achieved, after accounting for 4.8 mA/cm2 of parasitic loss and 1.6 mA/cm2 reflection loss. Further improvements may require a change in the baseline materials used in perovskite cells.

Copyright
Corresponding author
*(Email: pbermel@purdue.edu)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H.-S. Kim , C.-R. Lee , J.-H. Im , K.-B. Lee , T. Moehl , A. Marchioro , S.-J. Moon , R. Humphry-Baker , J.-H. Yum , J. E. Moser , M. Grätzel , and N.-G. Park , “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.,” Sci. Rep. 2, 591 (2012).

M. M. Lee , J. Teuscher , T. Miyasaka , T. N. Murakami , and H. J. Snaith , “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.,” Science 338, 643–7 (2012).

H. Zhou , Q. Chen , G. Li , S. Luo , T. -b. Song , H.-S. Duan , Z. Hong , J. You , Y. Liu , and Y. Yang , “Interface engineering of highly efficient perovskite solar cells,” Science (80-. ). 345, 542546 (2014).

I. Almansouri , A. Ho-Baillie , and M. A. Green , “Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices,” Jpn. J. Appl. Phys. 54, 08KD04 (2015).

J. P. Mailoa , C. D. Bailie , E. C. Johlin , E. T. Hoke , A. J. Akey , W. H. Nguyen , M. D. McGehee , and T. Buonassisi , “A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction,” Appl. Phys. Lett. 106, 121105 (2015).

R. Asadpour , R. V. K. Chavali , M. Ryyan Khan , and M. A. Alam , “Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ∼ 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).

P. Löper , S.-J. Moon , S. M. de Nicolas , B. Niesen , M. Ledinsky , S. Nicolay , J. Bailat , J.-H. Yum , S. De Wolf , and C. Ballif , “Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells.,” Phys. Chem. Chem. Phys. 17, 1619–29 (2015).

C. D. Bailie , M. G. Christoforo , J. P. Mailoa , A. R. Bowring , E. L. Unger , W. H. Nguyen , J. burschka , N. Pellet , J. Z. Lee , M. Grätzel , R. Noufi , T. Buonassisi , A. Salleo , and M. D. McGehee , “Polycrystalline Tandem Photovoltaics Using Perovskites on Top of Silicon and CIGS,” Energy Environ. Sci. 8, 956963 (2014).

W. H. Nguyen , C. D. Bailie , E. L. Unger , and M. D. McGehee , “Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI) 2 in Perovskite and Dye-Sensitized Solar Cells,” J. Am. Chem. Soc. 136, 1099611001 (2014).

O. Malinkiewicz , A. Yella , Y. H. Lee , G. M. Espallargas , M. Graetzel , M. K. Nazeeruddin , and H. J. Bolink , “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128132 (2013).

J. Liu , S. Pathak , T. Stergiopoulos , T. Leijtens , K. Wojciechowski , S. Schumann , N. Kausch-Busies , and H. J. Snaith , “Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells.,” J. Phys. Chem. Lett. 6, 1666–73 (2015).

M. Filipič , P. Löper , B. Niesen , S. De Wolf , J. Krč , C. Ballif , and M. Topič , “CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.,” Opt. Express 23, A263–78 (2015).

N. N. Lal , T. P. White , and K. R. Catchpole , “Optics and Light Trapping for Tandem Solar Cells on Silicon,” IEEE J. Photovoltaics 4, 13801386 (2014).

B. W. Schneider , N. N. Lal , S. Baker-Finch , and T. P. White , “Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells.,” Opt. Express 22, A1422–30 (2014).

K. Wojciechowski , M. Saliba , T. Leijtens , A. Abate , and H. J. Snaith , “Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 11421147 (2014).

Y. Chen , T. Chen , and L. Dai , “Layer-by-layer growth of CH3 NH3 PbI(3-x)Clx for highly efficient planar heterojunction perovskite solar cells.,” Adv. Mater. 27, 1053–9 (2015).

J. Zhao and M. A. Green , “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Devices 38, 19251934 (1991).

H. Chung , “Accurate FDTD Dispersive Modeling for Concrete Materials,” ETRI J. 35, 915918 (2013).

S.-G. Ha , J. Cho , J. Choi , H. Kim , and K.-Y. Jung , “FDTD Dispersive Modeling of Human Tissues Based on Quadratic Complex Rational Function,” IEEE Trans. Antennas Propag. 61, 996999 (2013).

H. Chung , K.-Y. Jung , X. T. Tee , and P. Bermel , “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function.,” Opt. Express 22, A818–32 (2014).

H. Chung , S.-G. Ha , J. Choi , and K.-Y. Jung , “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electron. 102, 12181228 (2014).

H. Chung , K.-Y. Jung , and P. Bermel , “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mater. Express 5, 2054 (2015).

V. E. Ferry , M. A. Verschuuren , H. B. T. Li , E. Verhagen , R. J. Walters , R. E. I. Schropp , H. A. Atwater , and A. Polman , “Light trapping in ultrathin plasmonic solar cells.,” Opt. Express 18, A237A245 (2010).

P. Bermel , C. Luo , L. Zeng , L. C. Kimerling , and J. D. Joannopoulos , “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986 (2007).

D. Zhou and R. Biswas , “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 309 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.