Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T15:02:37.912Z Has data issue: false hasContentIssue false

A Physical Route to High Performance Heterojunction Composites: Experiments, Mechanism and Applications

Published online by Cambridge University Press:  09 February 2016

Delong Li
Affiliation:
Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, China. School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
Chengzhi Luo
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
Chunxu Pan*
Affiliation:
Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong 518057, China. School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
*
Get access

Abstract

In order to enhance the photocatalytic efficiency of oxide semiconductors, variant processes have been proposed. The creation of the heterojunction composites has attracted considerable attentions and developed into an important research area for the high performance photocatalyst preparation. In this paper, we introduce the research progress on heterojunction composites which were prepared via a novel physical route with relatively high temperature treatments. It is hope that this mini-review can inspire research interest in the realm of heterojunction synthesis based on the thermal diffusion mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Hanaor, D. A. H. and Sorrell, C. C., J. Mater. Sci. 46, 855 (2011).Google Scholar
Nam, S. H., Shim, H. S., Kim, Y. S., Dar, M. A., Kim, J. G. and Kim, W. B., ACS Appl. Mater. Inter. 2, 2046 (2010).Google Scholar
Zhang, Y. P., Li, C. Z. and Pan, C. X., J. Am. Ceram. Soc. 95, 2951 (2012).Google Scholar
Ostermann, R., Li, D., Yin, Y. D., McCann, J. T. and Xia, Y. N., Nano Lett. 6, 1297 (2006).Google Scholar
Li, D. L. and Pan, C. X., Prog. Nat. Sci. Mater. Inter. 22, 59 (2012).Google Scholar
Zhang, Y. P., Fei, L. F., Jiang, X. D., Pan, C. X. and Wang, Y., J. Am. Ceram. Soc. 94, 4157 (2011).CrossRefGoogle Scholar
Wang, H.Y., Yang, Y., Li, X., Li, J., and Wang, C., Chin. Chem. Lett. 21, 1119 (2010).Google Scholar
Kim, D.W., Lee, S., Jung, H.S., Kim, J.Y., Kim, J., Shin, H., and Hong, K.S., Inter. J. Hydrogen Energy 32, 3137 (2007).Google Scholar
Fragal, M. E., Cacciotti, I., Aleeva, Y., Nigro, R. L., Bianco, A., Malandrino, G., Spinella, C., Pezzotti, G., and Gusmano, G., CrystEngComm 12, 3858 (2010).Google Scholar
Kanjwal, M. A., Barakat, N., Sheikh, F. A., Park, S. J. and Kim, H. Y., Macromol. Res. 18, 233 (2010).Google Scholar
Zhang, Y. P., Pan, C. X., J. Mater. Sci. 46, 2622(2011).Google Scholar
Li, D. L., Jiang, X. D., Zhang, Y. P., Zhang, B., Pan, C. X., J. Mater. Res. 28, 507 (2013).CrossRefGoogle Scholar
Li, D. L., Zhang, Y. P., Wu, W. H. and Pan, C. X., RSC Adv. 4, 18186 (2014).Google Scholar
Ohta, H., Hirano, M., Nakahara, K., Maruta, H., Tanabe, T., Kamiya, M., Kamiya, T. and Hosono, H., Appl. Phys. Lett. 83, 1029 (2003).Google Scholar
Luo, C. Z., Li, D. L., Wu, W. H., Zhang, Y. P. and Pan, C. X., RSC Adv. 4, 3090 (2014).Google Scholar
Kim, Y. J., Lee, J. H., Yi, G. C., Appl. Phys. Lett. 95, 213101 (2009).Google Scholar
Li, D. L., Wu, W. H., Zhang, Y. P., Liu, L. L. and Pan, C. X., J. Mater. Sci. 49, 1854 (2014).Google Scholar
Luo, C. Z., Li, D. L., Wu, W. H., Yu, C. Z., Li, W. P. and Pan, C. X., Applied Catal. B: Environ. 166-167, 217 (2015).CrossRefGoogle Scholar