Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T21:55:46.763Z Has data issue: false hasContentIssue false

Ropy foam-like TiO2 film grown by water-based process for electron-conduction layer of perovskite solar cells

Published online by Cambridge University Press:  20 June 2016

Sarmad Fawzi Hamza Alhasan*
Affiliation:
Department of Electrical and Computer Engineering, Orlando, Florida 32816-2362, U.S.A. Laser and Optoelectronics Engineering Department, University of Technology, Baghdad, Iraq
Farnood Khalilzadeh-Rezaie
Affiliation:
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, U.S.A.
Robert E. Peale
Affiliation:
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, U.S.A.
Isaiah O Oladeji
Affiliation:
SISOM Thin Films LLC, Orlando, FL 32805, U.S.A.
Get access

Abstract

Self-assembled TiO2 foam-like films, were grown by the water based Streaming Process for Electrodeless Electrochemical Deposition (SPEED). The morphology of the ∼1 µm thick films consists of a tangled ropy structure with individual strands of ∼200 nm diameter and open pores of 0.1 to 3 micron dimensions. Such films are advantageous for proposed perovskite solar cell comprising CH3NH3PbI3 absorber with additional inorganic films as contact and conduction layers, all deposited by SPEED. Lateral film resistivity is in the range 20 – 200 kΩ-cm, increasing with growth temperature, while sheet resistance is in the range 2 – 20 x 108 Ω/Sq. X-ray diffraction confirms presence of TiO2 crystals of orthorhombic class (Brookite). UV-vis spectroscopy shows high transmission below the expected 3.2 eV TiO2 bandgap. Transmittance increases with growth temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Snaith, H. J., Phys, J.. Chem. Lett. 4, 3623 (2013).Google Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Prog. Photovoltaics 22, 1 (2014).Google Scholar
National Renewable Energy Laboratory (NREL) (2016). Available at: www.nrel.gov/ncpv/ (accessed 15 March 2016).Google Scholar
Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sum, T. C. and Lam, Y. M., Energy Environ. Sci. 7, 399 (2014).Google Scholar
Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. and Herz, L. M., J. Phys. Chem. Lett, 5, 1300 (2014).Google Scholar
Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Graetzel, M., Mhaisalkar, S. and Sum, T. C., Science 342, 344 (2013).Google Scholar
Han, G. S., Song, Y. H., Jin, Y. U., Lee, J.-W., Park, N.-G., Kang, B. K., Lee, J.-K., Cho, I. S., Yoon, D. H., and Jung, H. S., ACS Appl. Mater. Interfaces 7, 23521 (2015).Google Scholar
Chaki, S. H., Deshpande, M. P., Tailor, J. P., Thin Solid Films 550, 291 (2014).CrossRefGoogle Scholar
Patel, D. K., Kamyshny, A., Ariando, H. Zhen and Magdassi, Sh., J. Mater. Chem. C 3, 8700 (2015).Google Scholar
Rezaie, F. K., Oladeji, I., Yusuf, G., Nath, J., Nader, N., Vangala, S., Cleary, J., Schoenfeld, W., Winston, , Peale, R., MRS Proc. 1805, mrss15–2136423 (2015).Google Scholar
Kim, J. H., Lee, S., and Im, H. S., Appl. Phys. A 69, S629 (1999).Google Scholar
Bendavid, A., Martin, P. J. and Takikawa, H., Thin Solid Films 360, 241 (2000).Google Scholar
S Richards, B., Cotter, J. E., Honsberg, C. B. and Wenham, S. R., Proc. 28th IEEE Photovoltaic Specialists Conf. N.J., p. 375 (2000).Google Scholar
Hovel, H. J., Electrochem, J.. Soc. 125, 983 (1978).Google Scholar
Somberg, H., Proc. 20th IEEE Photovoltaics Specialists Conference, p. 1557 (1988).Google Scholar
Lee, C M. and Park, S. J., J. Materials Science: Materials in Electronics 1, 219 (1990).Google Scholar
Hsieh, C.-W., Chiang, A. S. T., Lee, C.-C., and Yang, S.-J., J. Non-Crystalline Solids 144, 53 (1992).Google Scholar
I Pyun, S., Park, J. W. and Yoon, Y. G., J. Alloys and Compounds 231, 315 (1995).Google Scholar
Gee, J. M., Grodon, R. and Liang, H., Proc. 25th IEEE Photovoltaics Specialists Conference. p.733 (1996).Google Scholar
Battiston, G. A., Gerbasi, R., Porchia, M. and Rizzo, L., Chemical Vapor Deposition 5, 73 (1999).Google Scholar
Zhou, Z., Lai, C. L. H., Chen, S., Yu, J., J. Crystal Growth 310, 2508 (2008).CrossRefGoogle Scholar
Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., and Ruoff, R. S., J. Am. Chem. Soc. 133, 2816 (2011).Google Scholar
Balasubramanian, K., Han, X. F. and Guenther, K. H., Applied Optics 32, 5594 (1993).Google Scholar
Hess, N. J., Exarhos, G. J. and Iedema, M. J., Proc. SPIE 1848, 243 (1992).Google Scholar
Wicaksana, D., Kobayashi, A. and Kinbara, A., J. Vacuum Science and Technology A 10, 1479 (1992).CrossRefGoogle Scholar
Krishna, M. G., Rao, K. N. and Mohan, S., J. Applied Physics 73, 434 (1993).Google Scholar
Losurdo, M., Capezzuto, P., and Bruno, G., Physical Review B 56, 10621(1997).Google Scholar
Doeswijk, L. M., de Moor, H. H. C., Blank, D. H. A. and Rogalla, H., Applied Physics A 69, S409 (1999).CrossRefGoogle Scholar
Ritala, M., Leskela, M. and Rauhala, E., Chemical Mater. 6, 556 (1994).Google Scholar
Boukennous, Y., Benyahia, B., Charif, M. R., and Chikouche, A., J. de Physique III 5, 1297 (1995).Google Scholar