Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gblv7 Total loading time: 0.268 Render date: 2022-05-25T15:54:44.596Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Bioenabled Nanophotonics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Biological molecules such as oligonucleotides, proteins, or peptides can be used for the synthesis, recognition, and assembly of materials with nanoscale dimensions. Of particular interest are the fields of near-field optics and plasmonics. Many potential optical applications depend on the ability to control the relative positioning of organic dyes, plasmon-resonant metal nanoparticles, and semiconductor quantum dots with nanoscale precision. In this article, we describe some recent achievements in biological assembly and nanophotonics, and discuss potential uses of biological materials for assembling optically functional nanostructures. We emphasize the use of biological materials to build well-defined nanostructures for near-field plasmon-enhanced fluorescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cha, J.N., Shimizu, K., Zhou, Y., Christiansen, S.C., Chmelka, B.F., Stucky, G.D., Morse, D.E., Proc. Nat. Acad. Sci. U.S.A. 96, 361 (1999).CrossRefGoogle Scholar
2.Gugliotti, L.A., Feldheim, D.L., Eaton, B.E., Science 304, 850 (2004).CrossRefGoogle Scholar
3.McMillan, R.A., Howard, J., Zaluzec, N.J., Kagawa, H.K., Mogul, R., Li, Y.F., Paavola, C.D., Trent, J.D., J. Am. Chem. Soc. 127, 2800 (2005).CrossRefGoogle Scholar
4.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).CrossRefGoogle Scholar
5.Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).CrossRefGoogle Scholar
6.Baneyx, F., Schwartz, D.T., Curr. Opin. Biotechnol. 18, 312 (2007).CrossRefGoogle Scholar
7.Rothemund, P.W.K., Nature 440, 297 (2006).CrossRefGoogle Scholar
8.Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K., Nature 399, 761 (1999).CrossRefGoogle Scholar
9.Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., Nature 391, 775 (1998).CrossRefGoogle Scholar
10.Chung, S.-W., Ginger, D.S., Morales, M.W., Zhang, Z., Chandrasekhar, V., Ratner, M.A., Mirkin, C.A., Small 1, 64 (2005).CrossRefGoogle Scholar
11.Xiong, X., Lidstrom, M.E., Parviz, B.A., J. Microelectromech. Syst. 16, 429 (2007).CrossRefGoogle Scholar
12.Vukusic, P., Sambles, J.R., Nature 424, 852 (2003).CrossRefGoogle Scholar
13.Wang, C.J., Lin, L.Y., Parviz, B.A., IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).CrossRefGoogle Scholar
14.Prasad, P.N., Biomaterials and Nanophotonics (John Wiley & Sons, Hoboken, NJ, 2004).CrossRefGoogle Scholar
15.Cheng, J.X., Xie, X.S., J. Phys. Chem. B 108, 827 (2004).CrossRefGoogle Scholar
16.Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P., Nat. Biotechnol. 23, 741 (2005).CrossRefGoogle Scholar
17.Lakowicz, J.R., Anal. Biochem. 298, 1 (2001).CrossRefGoogle Scholar
18.Lakowicz, J.R., Shen, Y., D'Auria, S., Malicka, J., Fang, J., Gryczynski, Z., Gryczynski, I., Anal. Biochem. 301, 261 (2002).CrossRefGoogle Scholar
19.Lakowicz, J.R., Anal. Biochem. 324, 153 (2004).CrossRefGoogle Scholar
20.Gryczynski, I., Malicka, J., Gryczynski, Z., Lakowicz, J.R., Anal. Biochem. 324, 170 (2004).CrossRefGoogle Scholar
21.Lakowicz, J.R., Anal. Biochem. 337, 171 (2005).CrossRefGoogle Scholar
22.Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Nat. Mater. 4, 435 (2005).CrossRefGoogle Scholar
23.Yezhelyev, M.V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S.M., O'Regan, R.M., Lancet Oncol. 7, 657 (2006).CrossRefGoogle Scholar
24.Mirkin, C.A., MRS Bull. 25, 43 (2000).Google Scholar
25.Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G., Science 294, 1901 (2001).CrossRefGoogle Scholar
26.Metraux, G.S., Mirkin, C.A., Adv. Mater. 17, 412 (2005).CrossRefGoogle Scholar
27.Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
28.Xia, Y.N., Halas, N.J., MRS Bull. 30, 338 (2005).CrossRefGoogle Scholar
29.Murphy, C.J., Sau, T.K., Gole, A., Orendorff, C.J., MRS Bull. 30, 349 (2005).CrossRefGoogle Scholar
30.Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J.X., Gou, L., Hunyadi, S.E., Li, T., J. Phys. Chem. B 109, 13857 (2005).CrossRefGoogle Scholar
31.Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., Xia, Y., J. Phys. Chem. B 110, 15666 (2006).CrossRefGoogle Scholar
32.Jain, P., Huang, X., El-Sayed, I., El-Sayed, M., Plasmonics 2, 107 (2007).CrossRefGoogle Scholar
33.Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2007).CrossRefGoogle Scholar
34.Noguez, C., J. Phys. Chem. C 111, 3806 (2007).CrossRefGoogle Scholar
35.Hao, E., Schatz, G.C., J. Chem. Phys. 120, 357 (2004).CrossRefGoogle Scholar
36.Taflove, A., Hagness, S., Computational Electrodynamics: The Finite-Difference TimeDomain Method Second Edition (Artech House, Boston, 2000).Google Scholar
37.Novotny, L., Hecht, B., Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
38.Sherry, L.J., Jin, R.C., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P., Nano Lett. 6, 2060 (2006).CrossRefGoogle Scholar
39.Sánchez, E.J., Novotny, L., Xie, X.S., Phys. Rev. Lett. 82, 4014 (1999).CrossRefGoogle Scholar
40.Hecht, B., Sick, B., Wild, U.P., Deckert, V., Zenobi, R., Martin, O.J.F., Pohl, D.W., J. Chem. Phys. 112, 7761 (2000).CrossRefGoogle Scholar
41.Neacsu, C.C., Steudle, G.A., Raschke, M.B., Appl. Phys. B: Lasers Opt. 80, 295 (2005).CrossRefGoogle Scholar
42.Otto, A., Mrozek, I., Grabhorn, H., Akemann, W., J. Phys.: Condens. Matter 4, 1143 (1992).Google Scholar
43.Campion, A., Kambhampati, P., Chem. Soc. Rev. 27, 241 (1998).CrossRefGoogle Scholar
44.Becker, H., Burns, S.E., Friend, R.H., Phys. Rev. B 56, 1893 (1997).CrossRefGoogle Scholar
45.Vuckovic, J., Loncar, M., Scherer, A., IEEE J. Quantum Electron. 36, 1131 (2000).CrossRefGoogle Scholar
46.Hobson, P.A., Wedge, S., Wasey, J.A.E., Sage, I., Barnes, W.L., Adv. Mater. 14, 1393 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
47.Chance, R.R., Prock, A., Silbey, R.J., Adv. Chem. Phys. 37, 1 (1978).Google Scholar
48.Barnes, W.L., J. Mod. Opt. 45, 661 (1998).CrossRefGoogle Scholar
49.Dulkeith, E., Morteani, A.C., Niedereichholz, T., Klar, T.A., Feldmann, J., Levi, S.A., van Veggel, F.C.J.M., Reinhoudt, D.N., Möller, M., Gittins, D.I., Phys. Rev. Lett. 89, 203002 (2002).CrossRefGoogle Scholar
50.Dulkeith, E., Ringler, M., Klar, T.A., Feldmann, J., Munoz Javier, A., Parak, W.J., Nano Lett. 5, 585 (2005).CrossRefGoogle Scholar
51.Schneider, G., Decher, G., Nerambourg, N., Praho, R., Werts, M.H.V., Blanchard-Desce, M., Nano Lett. 6, 530 (2006).CrossRefGoogle Scholar
52.Cannone, F., Chirico, G., Bizzarri, A.R., Cannistraro, S., J. Phys. Chem. B 110, 16491 (2006).CrossRefGoogle Scholar
53.Seelig, J., Leslie, K., Renn, A., Kuhn, S., Jacobsen, V., van de Corput, M., Wyman, C., Sandoghdar, V., Nano Lett. 7, 685 (2007).CrossRefGoogle Scholar
54.Kümmerlen, J., Leitner, A., Brunner, H., Aussenegg, F.R., Wokaun, A., Mol. Phys. 80, 1031 (1993).CrossRefGoogle Scholar
55.Sokolov, K., Chumanov, G., Cotton, T.M., Anal. Chem. 70, 3898 (1998).CrossRefGoogle Scholar
56.Shimizu, K.T., Woo, W.K., Fisher, B.R., Eisler, H.J., Bawendi, M.G., Phys. Rev. Lett. 89, 117401 (2002).CrossRefGoogle Scholar
57.Ray, K., Badugu, R., Lakowicz, J.R., Langmuir 22, 8374 (2006).CrossRefGoogle ScholarPubMed
58.Kühn, S., Håkanson, U., Rogobete, L., Sandoghdar, V., Phys. Rev. Lett. 97, 017402 (2006).CrossRefGoogle Scholar
59.Pan, S.L., Wang, Z.J., Rothberg, L.J., J. Phys. Chem. B 110, 17383 (2006).CrossRefGoogle Scholar
60.Tam, F., Goodrich, G.P., Johnson, B.R., Halas, N.J., Nano Lett. 7, 496 (2007).CrossRefGoogle Scholar
61.Xie, F., Baker, M.S., Goldys, E.M., J. Phys. Chem. B 110, 23085 (2006).CrossRefGoogle Scholar
62.Bharadwaj, P., Novotny, L., Opt. Express 15, 14266 (2007).CrossRefGoogle Scholar
63.Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U., Artemyev, M., Nano Lett. 2, 1449 (2002).CrossRefGoogle Scholar
64.Anger, P., Bharadwaj, P., Novotny, L., Phys. Rev. Lett. 96, 113002 (2006).CrossRefGoogle Scholar
65.Bharadwaj, P., Anger, P., Novotny, L., Nanotechnology 18, 044017 (2007).CrossRefGoogle Scholar
66.Weber, W.H., Eagen, C.F., Opt. Lett. 4, 236 (1979).CrossRefGoogle Scholar
67.Gersten, J., Nitzan, A., J. Chem. Phys. 75, 1139 (1981).CrossRefGoogle Scholar
68.Andreussi, O., Corni, S., Mennucci, B., Tomasi, J., J. Chem. Phys. 121, 10190 (2004).CrossRefGoogle Scholar
69.Carminati, R., Greffet, J.J., Henkel, C., Vigoureux, J.M., Opt. Commun. 261, 368 (2006).CrossRefGoogle Scholar
70.Munechika, K., Smith, J.M., Chen, Y., Ginger, D.S., J. Phys. Chem. C 111, 18906 (2007).CrossRefGoogle Scholar
71.Das, P.C., Puri, A., Phys. Rev. B 65, 155416 (2002).CrossRefGoogle Scholar
72.Thomas, M., Greffet, J.-J., Carminati, R., Arias-Gonzalez, J.R., Appl. Phys. Lett. 85, 3863 (2004).CrossRefGoogle Scholar
73.Chen, Y., Munechika, K., Ginger, D.S., Nano Lett. 7, 690 (2007).CrossRefGoogle Scholar
74.Wenseleers, W., Stellacci, F., Meyer-Friedrichsen, T., Mangel, T., Bauer, C.A., Pond, S.J.K., Marder, S.R., Perry, J.W., J. Phys. Chem. B 106, 6853 (2002).CrossRefGoogle Scholar
75.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature 382, 607 (1996).CrossRefGoogle Scholar
76.Park, S.J., Lazarides, A.A., Storhoff, J.J., Pesce, L., Mirkin, C.A., J. Phys. Chem. B 108, 12375 (2004).CrossRefGoogle Scholar
77.Demers, L.M., Ginger, D.S., Park, S.-J., Li, Z., Chung, S.-W., Mirkin, C.A., Science 296, 1836 (2002).CrossRefGoogle Scholar
78.Jennings, T.L., Singh, M.P., Strouse, G.F., J. Am. Chem. Soc. 128, 5462 (2006).CrossRefGoogle Scholar
79.Persson, B.N.J., Lang, N.D., Phys. Rev. B 26, 5409 (1982).CrossRefGoogle Scholar
80.Yun, C.S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., Hopkins, B., Reich, N.O., Strouse, G.F., J. Am. Chem. Soc. 127, 3115 (2005).CrossRefGoogle Scholar
81.Pons, T., Medintz, I.L., Sapsford, K.E., Higashiya, S., Grimes, A.F., English, D.S., Mattoussi, H., Nano Lett. 7, 3157 (2007).CrossRefGoogle Scholar
82.Lee, J., Govorov, A.O., Dulka, J., Kotov, N.A., Nano Lett. 4, 2323 (2004).CrossRefGoogle Scholar
83.Lee, J., Govorov, A.O., Kotov, N.A., Nano Lett. 5, 2063 (2005).CrossRefGoogle Scholar
84.Lee, J., Hernandez, P., Lee, J., Govorov, A.O., Kotov, N.A., Nat. Mater. 6, 291 (2007).CrossRefGoogle Scholar
85.Zin, M.T., Munro, A.M., Gungormus, M., Wong, N.Y., Ma, H., Tamerler, C., Ginger, D.S., Sarikaya, M., Jen, A.K.Y., J. Mater. Chem. 17, 866 (2007).CrossRefGoogle Scholar
86.Medintz, I.L., Konnert, J.H., Clapp, A.R., Stanish, I., Twigg, M.E., Mattoussi, H., Mauro, J.M., Deschamps, J.R., Proc. Nat. Acad. Sci. U.S.A. 101, 9612 (2004).CrossRefGoogle Scholar
88.Silverton, E.W., Navia, M.A., Davies, D.R., Proc. Nat. Acad. Sci. U.S.A. 74, 5140 (1977).CrossRefGoogle Scholar
89.Anderson, D.H., Kickhoefer, V.A., Sievers, S.A., Rome, L.H., Eisenberg, D., PLoS Biol. 5, e318 (2007).CrossRefGoogle Scholar
90.Palmer, E., Rotavirus transmission electron micrograph (Public domain image supplied by the CDC PHIL, 1978).Google Scholar
91.Haney Carr, J., E. coli scanning electron micrograph (Public domain image supplied by the CDC PHIL, 2006).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bioenabled Nanophotonics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bioenabled Nanophotonics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bioenabled Nanophotonics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *