Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.559 Render date: 2022-08-14T16:26:03.505Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Circular dichroism: A powerful tool for studying biomineralization promoter proteins

Published online by Cambridge University Press:  03 June 2015

Melika Sarem
Affiliation:
Institute for Macromolecular Chemistry, University of Freiburg; Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany; Bioss, Centre for Biological Signalling Studies, University of Freiburg, Germany; melika.sarem@makro.uni-freiburg.de
Steffen Lüdeke
Affiliation:
Institute of Pharmaceutical Sciences, The University of Freiburg, Germany; steffen.luedeke@pharmazie.uni-freiburg.de
Get access

Abstract

Biomineralization is the matrix-directed calcification of tissue in living organisms. The deposition of different polymorphs of calcium phosphate or calcium carbonate is a highly regulated process. It may involve cell-controlled mechanisms with vesicular delivery of inorganic material to the extracellular matrix and cell-independent processes mediated by dedicated matrix proteins. These proteins promote the formation of microscopic crystals of defined size and shape, which combine to form bio-inorganic materials with unique properties. Successful biomineralization is correlated with structural elements, such as matrix proteins involved in the nucleation process. Circular dichroism (CD) is a spectroscopic technique for the determination of a secondary structure of proteins and has therefore been applied for studying numerous biomineralization promoter proteins. This article reviews and compares CD data on matrix proteins from different contexts, such as eggs, seashells, and teeth. It highlights the potential of CD for secondary structure determination and quantification and points out pitfalls that may lead to misinterpretation of CD spectra. The data suggest that most biomineralization promoter proteins contain domains of different secondary structure with predominantly unordered conformation. However, they may acquire a higher degree of order initiated by environmental factors such as pH, presence of cations, or charged surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boonrungsiman, S., Gentleman, E., Carzaniga, R., Evans, N.D., McComb, D.W., Porter, A.E., Stevens, M.M., Proc. Natl. Acad. Sci. U.S.A. 109, 14170 (2012).CrossRef
Addadi, L., Weiner, S., Angew. Chem. Int. Ed. 31, 153 (1992).CrossRef
George, A., Veis, A., Chem. Rev. 108, 4670 (2008).CrossRef
Kröger, N., Lorenz, S., Brunner, E., Sumper, M., Science 298, 584 (2002).CrossRef
Lakshminarayanan, R., Kini, R.M., Valiyaveettil, S., Proc. Natl. Acad. Sci. U.S.A. 99, 5155 (2002).CrossRef
Stetler-Stevenson, W.G., Veis, A., Calcif. Tissue Int. 40, 97 (1987).CrossRef
Moradian-Oldak, J., Matrix Biol. 20, 293 (2001).CrossRef
Cheng, P.N., Pham, J.D., Nowick, J.S., J. Am. Chem. Soc. 135, 5477 (2013).CrossRef
Woody, R.W., in Comprehensive Chiroptical Spectroscopy, Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds. (Wiley-VCH, New York, 2012), vol. 2, p. 475.Google Scholar
Johnson, W.C., Tinoco, I., J. Am. Chem. Soc. 94, 4389 (1972).CrossRef
Brahms, S., Brahms, J., J. Mol. Biol. 138, 149 (1980).CrossRef
Townend, R., Kumosinski, T.F., Timasheff, S.N., Fasman, G.D., Davidson, B., Biochem. Biophys. Res. Commun. 23, 163 (1966).CrossRef
Greenfield, N., Fasman, G.D., Biochemistry 8, 4108 (1969).CrossRef
Bonora, G.M., Toniolo, C., Biopolymers 13, 1067 (1974).CrossRef
Timasheff, S.N., Townend, R., Mescanti, L., J. Biol. Chem. 241, 1863 (1966).
Sreerama, N., Woody, R.W., Protein Sci. 12, 384 (2003).CrossRef
Woody, R.W., Monatsh. Chem. 136, 347 (2005).CrossRef
Toniolo, C., Formaggio, F., Woody, R.W., in Comprehensive Chiroptical Spectroscopy, Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds. (Wiley, Hoboken, 2012), vol. 2, p. 499.CrossRefGoogle Scholar
Sutherland, J.C.,Comprehensive Chiroptical Spectroscopy, Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds. (Wiley, Hoboken, New Jersey, 2012), vol. 1, p. 37.Google Scholar
Johnson, W.C., Annu. Rev. Biophys. Bio. 17, 145 (1988).CrossRef
Greenfield, N.J., Nat. Protoc. 1, 2876 (2006).CrossRef
Bulheller, B.M., Hirst, J.D., Bioinformatics 25, 539 (2009).CrossRef
Urry, D.W., Krivacic, J., Proc. Natl. Acad. Sci. U.S.A. 65, 845 (1970).CrossRef
Moffitt, W., Moscowitz, A., J. Chem. Phys. 30, 648 (1959).CrossRef
Mecham, D.K., Olcott, H.S., J. Am. Chem. Soc. 71, 3670 (1949).CrossRef
Anton, M., Nau, F., Nys, Y., Worlds Poult. Sci. J. 62, 429 (2006).CrossRef
Zhang, X., Geng, F., Huang, X., Ma, M., J. Cryst. Growth 409, 44 (2015).CrossRef
Onuma, K., J. Phys. Chem. B 109, 8257 (2005).CrossRef
Znidarsic, W.J., Chen, I.W., Shastri, V.P., J. Mater. Chem. 22, 19562 (2012).CrossRef
Moran, E.T., Poult. Sci. 86, 1043 (2007).CrossRef
Hincke, M.T., Tsang, C.P.W., Courtney, M., Hill, V., Narbaitz, R., Calcif. Tissue Int. 56, 578 (1995).CrossRef
Allerton, S.E., Perlmann, G.E., J. Biol. Chem. 240, 3892 (1965).
Giancotti, V., Quadrifoglio, F., Crescenzi, V., Eur. J. Biochem. 35, 78 (1973).CrossRef
Taborsky, G., J. Biol. Chem. 243, 6014 (1968).
Timasheff, S.N., Townend, R., Perlmann, G.E., J. Biol. Chem. 242, 2290 (1967).
Rabanal, F., Ludevid, M.D., Pons, M., Giralt, E., Biopolymers 33, 1019 (1993).CrossRef
Wilhelm, P., Lewandowski, B., Trapp, N., Wennemers, H., J. Am. Chem. Soc. 136, 15829 (2014).CrossRef
Tiffany, M.L., Krimm, S., Biopolymers 6, 1379 (1968).CrossRef
Shi, Z.S., Woody, R.W., Kallenbach, N.R., Adv. Protein Chem. 62, 163 (2002).CrossRef
Blout, E.R., Idelson, M., J. Am. Chem. Soc. 78, 497 (1956).CrossRef
Grizzuti, K., Perlmann, G.E., J. Biol. Chem. 245, 2573 (1970).
Taborsky, G., Biochemistry 2, 266 (1963).CrossRef
Grizzuti, K., Perlmann, G.E., Biochemistry 12, 4399 (1973).CrossRef
Lakshminarayanan, R., Joseph, J.S., Kini, R.M., Valiyaveettil, S., Biomacromolecules 6, 741 (2005).CrossRef
Reyes-Grajeda, J.P., Jáuregui-Zúñiga, D., Rodríguez-Romero, A., Hernández-Santoyo, A., Bolanos-Garcia, V.M., Moreno, A., Protein Pept. Lett. 9, 253 (2002).CrossRef
Lide, D.R. Ed., CRC Handbook of Chemistry and Physics, 85th ed. (CRC Press, Boca Raton, 2004).
Perlmann, G.E., Grizzuti, K., Biochemistry 10, 4168 (1971).CrossRef
Falini, G., Albeck, S., Weiner, S., Addadi, L., Science 271, 67 (1996).CrossRef
Raz, S., Weiner, S., Addadi, L., Adv. Mater. 12, 38 (2000).3.0.CO;2-I>CrossRef
Weiner, S., Biochemistry 22, 4139 (1983).CrossRef
Greenfield, E.M., Wilson, D.C., Crenshaw, M.A., Am. Zool. 24, 925 (1984).CrossRef
Halloran, B.A., Donachy, J.E., Comp. Biochem. Physiol. B: Comp. Biochem. 111, 221 (1995).CrossRef
Hattan, S.J., Laue, T.M., Chasteen, N.D., J. Biol. Chem. 276, 4461 (2001).CrossRef
Pan, C., Fang, D., Xu, G.R., Liang, J., Zhang, G.Y., Wang, H.Z., Xie, L.P., Zhang, R.Q., J. Biol. Chem. 289, 2776 (2014).CrossRef
Wustman, B.A., Morse, D.E., Evans, J.S., Langmuir 18, 9901 (2002).CrossRef
Michenfelder, M., Fu, G., Lawrence, C., Weaver, J.C., Wustman, B.A., Taranto, L., Evans, J.S., Morsel, D.E., Biopolymers 70, 522 (2003).CrossRef
Hosseini, S., Naderi-Manesh, H., Mountassif, D., Cerruti, M., Vali, H., Faghihi, S., J. Biol. Chem. 288, 7885 (2013).CrossRef
Amos, F.F., Ndao, M., Evans, J.S., Biomacromolecules 10, 3298 (2009).CrossRef
Ajikumar, P.K., Lakshminarayanan, R., Ong, B.T., Valiyaveettil, S., Kini, R.M., Biomacromolecules 4, 1321 (2003).CrossRef
Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., Akera, S., FEBS Lett. 462, 225 (1999).CrossRef
Kim, I.W., DiMasi, E., Evans, J.S., Cryst. Growth Des. 4, 1113 (2004).CrossRef
Fincham, A.G., Moradian-Oldak, J., Simmer, J.P., J. Struct. Biol. 126, 270 (1999).CrossRef
Gibson, C.W., Yuan, Z.A., Hall, B., Longenecker, G., Chen, E.H., Thyagarajan, T., Sreenath, T., Wright, J.T., Decker, S., Piddington, R., Harrison, G., Kulkarni, A.B., J. Biol. Chem. 276, 31871 (2001).CrossRef
Lakshminarayanan, R., Yoon, I., Hegde, B.G., Fan, D.M., Du, C., Moradian-Oldak, J., Proteins 76, 560 (2009).CrossRef
Shi, Z.S., Olson, C.A., Rose, G.D., Baldwin, R.L., Kallenbach, N.R., Proc. Natl. Acad. Sci. U.S.A. 99, 9190 (2002).CrossRef
Makowska, J., Rodziewicz-Motowidlo, S., Baginska, K., Vila, J.A., Liwo, A., Chmurzynski, L., Scheraga, H.A., Proc. Natl. Acad. Sci. U.S.A. 103, 1744 (2006).CrossRef
Chen, C.L., Bromley, K.M., Moradian-Oldak, J., De Yoreo, J.J., J. Am. Chem. Soc. 133, 17406 (2011).CrossRef
Lokappa, S.B., Chandrababu, K.B., Dutta, K., Perovic, I., Evans, J.S., Moradian-Oldak, J., Biopolymers 103, 96 (2015).CrossRef
Chandrababu, K.B., Dutta, K., Lokappa, S.B., Ndao, M., Evans, J.S., Moradian-Oldak, J., Biopolymers 101, 525 (2014).CrossRef
Otzen, D., Biochim. Biophys. Acta 1814, 562 (2011).CrossRef
George, A., Sabsay, B., Simonian, P.A.L., Veis, A., J. Biol. Chem. 268, 12624 (1993).
George, A., Silberstein, R., Veis, A., Connect. Tissue Res. 32, 389 (1995).
He, G., Dahl, T., Veis, A., George, A., Nat. Mater. 2, 552 (2003).CrossRef
Hao, J.J., Narayanan, K., Muni, T., Ramachandran, A., George, A., J. Biol. Chem. 282, 15357 (2007).CrossRef
Kalmar, L., Homola, D., Varga, G., Tompa, P., Bone 51, 528 (2012).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Circular dichroism: A powerful tool for studying biomineralization promoter proteins
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Circular dichroism: A powerful tool for studying biomineralization promoter proteins
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Circular dichroism: A powerful tool for studying biomineralization promoter proteins
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *