Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-x64cq Total loading time: 0.216 Render date: 2022-05-18T12:18:54.821Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Contact materials for nanowire devices and nanoelectromechanical switches

Published online by Cambridge University Press:  18 February 2011

Muhammad Mustafa Hussain
Affiliation:
King Abdullah University of Science and Technology; muhammad.hussain@kaust.edu.sa
Jinhui Song
Affiliation:
Georgia Institute of Technology; jhsong@gatech.edu
Get access

Abstract

The impact of contact materials on the performance of nanostructured devices is expected to be significant. This is especially true since size scaling can increase the contact resistance and induce many unseen phenomenon and reactions that greatly impact device performance. Nanowire and nanoelectromechanical switches are two emerging nanoelectronic devices. Nanowires provide a unique opportunity to control the property of a material at an ultra-scaled dimension, whereas a nanoelectromechanical switch presents zero power consumption in its off state, as it is physically detached from the sensor anode. In this article, we specifically discuss contact material issues related to nanowire devices and nanoelectromechanical switches.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Law, M., Goldberger, J., Yang, P., Annu. Rev. Mater. Res. 34, 83 (2004).CrossRefGoogle Scholar
2.Allen, R.E., Phys. Rev. B 25, 1423 (1982).CrossRefGoogle Scholar
3.Schmidt, V., Wittemann, J.V., Senz, S., Gösele, U., Adv. Mater. 21, 2681 (2009).CrossRefGoogle Scholar
4.Landman, U., Barnett, R.N., Scherbakov, A.G., Avouris, P., Phys. Rev. Lett. 85 (9), 1958 (2000).CrossRefGoogle Scholar
5.Leonard, F., Talin, A., Phys. Rev. Lett. 97, 026804 (2006).CrossRefGoogle Scholar
6.Hanrath, T., Korgel, B.A., Proc. Inst. Mech. Eng. N, J. Nanoeng. Nanosyst. 218 (2005).Google Scholar
7.Piscator, J., Engström, O., Physica E 40 (7), 2508 (2008).CrossRefGoogle Scholar
8.Seo, K., Sharma, S., Yasseri, A.A., Stewart, D.R., Kamins, T.I., Electrochem. Solid-State Lett. 9, G69 (2006).CrossRefGoogle Scholar
9.Woodruff, S.M., Dellas, N.S., Liu, B.Z., Eichfeld, S.M., Mayer, T.S., Redwing, J.M., Mohney, S.E., J. Vac. Sci. Technol., B 26, 1592 (2008).CrossRefGoogle Scholar
10.Tans, S.J., Verschueren, A., Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
11.Anantram, M.P., Leonard, F., Rep. Prog. Phys. 69, 507 (2006).CrossRefGoogle Scholar
12.McEuen, P.L., Fuhrer, M., Park, H., IEEE Trans. Nanotechnol. 1, 78 (2002).CrossRefGoogle Scholar
13.Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., Avouris, Ph., Phys. Rev. Lett. 89, 106801 (2002).CrossRefGoogle Scholar
14.Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Nature 424, 654 (2003).CrossRefGoogle Scholar
15.Derycke, V., Martel, R., Appenzeller, J., Avouris, Ph., Appl. Phys. Lett. 80, 2773 (2002).CrossRefGoogle Scholar
16.Ham, M.-H., Choi, J.-H., Hwang, W., Park, C., Lee, W.-Y., Myoung, J.-M., Nanotechnology 17, 2203 (2006).CrossRefGoogle Scholar
17.Zhou, J., Gu, Y., Hu, Y., Mai, W., Yeh, P.-H., Bao, G., Sood, A.K., Polla, D.L., Wang, Z.L., Appl. Phys. Lett. 94, 191103 (2009).CrossRefGoogle Scholar
18.Wei, T.-Y., Yeh, P.-H., Lu, S.-Y., Wang, Z.L., J. Am. Chem. Soc. 131, 17690 (2009).CrossRefGoogle Scholar
19.Gopalakrishnan, K., Griffin, P.B., Plummer, J.D., Technical Digest of International Electron Devices Meeting, 289 (2002).Google Scholar
20.Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K., IEEE Electron Device Lett. 28, 743 (2007).CrossRefGoogle Scholar
21.Kam, H., Liu, T.-J.K., Alon, E., Horowitz, M., Technical Digest of International Electron Devices Meeting, 1 (2008).Google Scholar
23.Akarvardar, K., Eggimann, C., Tsamados, D., Chauhan, Y.S., Wan, G.C., Ionescu, A.M., Howe, R.T., Wong, H.-S.P., IEEE Trans. Electron Devices 55, 1 (2008).CrossRefGoogle Scholar
24.Nathanson, H.C., Newell, W.E., Wickstrom, R.A., IEEE Trans. Electron Devices 14 (3), 117 (1967).CrossRefGoogle Scholar
25.Blackburn, G., Levi, M., Janata, J., Appl. Phys. Lett. 43 (7), 700 (1983).CrossRefGoogle Scholar
26.Sato, T., Shimizu, M., Uchida, H., Katsube, T., Sens. Actuators, B 20 (2/3), 213 (1994).CrossRefGoogle Scholar
27.Gergintschew, Z., Kornetzky, P., Schipanski, D., Sens. Actuators, B 35/36 (1–3), 285 (1996).CrossRefGoogle Scholar
28.Voorthuyzen, J., Bergveld, P., Sens. Actuators, A 14 (4), 349 (1988).CrossRefGoogle Scholar
29.Huang, J., Howe, R., Lee, H., Electron. Lett. 25 (23), 1571 (1989).CrossRefGoogle Scholar
30.Ionescu, A.M., Pott, V., Fritschi, R., Banerjee, K., Declercq, M.J., Renaud, Ph., Hibert, C., Fluckiger, Ph., Racine, G.-A., Proc. ISQED 2002, 496 (2002).Google Scholar
31.Kam, H., Lee, D.T., Howe, R.T., King, T.-J., IEDM Tech. Dig. 463 (2005).Google Scholar
32.Akarvardar, K., Elata, D., Parsa, R., Wan, G.C., Yoo, K., Provine, J., Peumans, P., Howe, R.T., Wong, H.-S.P., Technical Digest of International Electron Devices Meeting (IEDM) 299 (2007).Google Scholar
33.Singh, J.P., Liu, D.-L., Ye, D.-X., Picu, R.C., Lu, T.-M., Wang, G.-C., Appl. Phys. Lett. 84, 3657 (2004).CrossRefGoogle Scholar
34.Bargatin, I., Kozinsky, I., Roukes, M.L., Appl. Phys. Lett. 90, 093116 (2007).CrossRefGoogle Scholar
35.Jang, W.W., Lee, J.O., Yoon, J.-B., Kim, M.-S., Lee, J.-M., Kim, S.-M., Cho, K.-H., Kim, D.-W., Park, D., Lee, W.-S., Appl. Phys. Lett. 92, 103110 (2008).CrossRefGoogle Scholar
36.Akarvardar, K., Wong, H., “Nanoelectromechanical Logic and Memory Devices,” presented at the ECS 2009 Summer Meeting.Google Scholar
37.Yousif, M.Y.A., Lundgren, P., Ghavanini, F., Enoksson, P., Bengtsson, S., Nanotechnology 19, 285204 (2008).CrossRefGoogle Scholar
38.Tans, S., Verchueren, A.R., Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
39.Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C., Nature 386, 474 (1997).CrossRefGoogle Scholar
40.Lin, Y.-M. Appenzeller, J., Avouris, Ph., Technical Digest of International Electron Devices Meeting (IEDM) 687 (2004).Google Scholar
41.Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.J., Nat. Mater. 1, 241 (2002).CrossRefGoogle Scholar
42.Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M., Dai, H., Phys. Rev. Lett. 92, 106804 (2004).CrossRefGoogle Scholar
43.Singh, D.V., Jenkins, K.A., Appenzeller, J., Electron. Lett. 41, 280 (2005).CrossRefGoogle Scholar
44.Ilani, S., Donev, L.A.K., Kindermann, M., McEuen, P.L., Nat. Phys. 2, 687 (2006).CrossRefGoogle Scholar
45.Rebeiz, G., Muldavin, J.B., IEEE Microwave Mag. 2, 59 (2001).CrossRefGoogle Scholar
46.Bunch, J.S., Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L., Science 315 (5811) 490 (2007).CrossRefGoogle Scholar
47.Hussain, M.M., Smith, C.E., Elata, D., Akarvardar, K., Parsa, R., Yoo, K., Provine, J., Williams, J., Rader, K., Barnett, J., Park, C., Cruz, M., Kirsch, P.D., Wong, H.-S.P., Howe, R.T., Jammy, R., NATO Advanced Research Workshop on Advanced Materials and Technologies for Micro/Nano Devices, Sensors and Actuators, St. Petersburg, Russia (2009).Google Scholar
48.Parsa, R., Chong, S., Patil, N., Akarvardar, K., Provine, J., Lee, D., Elata, D., Mitra, S., Wong, H.-S.P., Howe, R.T., Solid-State Sensors, Actuators, and Microsystems Workshop 7 (2010).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Contact materials for nanowire devices and nanoelectromechanical switches
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Contact materials for nanowire devices and nanoelectromechanical switches
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Contact materials for nanowire devices and nanoelectromechanical switches
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *