Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-jp8mt Total loading time: 0.311 Render date: 2022-12-05T21:02:00.204Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Electron flow and biofilms

Published online by Cambridge University Press:  18 May 2011

Kenneth H. Nealson
Affiliation:
University of Southern California, Los Angeles, CA 90089-0740, USA; knealson@usc.edu
Steven E. Finkel
Affiliation:
University of Southern California, Los Angeles, CA 90089-2910, USA; sfinkel@usc.edu
Get access

Abstract

Bacteria living in surface-attached biofilm communities must maintain electrochemical gradients to support basic cellular functions, including chemo-osmotic transport and adenosine triphosphate synthesis. Central to this is the maintenance of electron flow to terminal electron acceptors. These acceptors can be soluble inorganic and organic molecules, such as oxygen, nitrate, sulfate, dimethyl sulfoxide, or fumarate, or solid metal oxides, such as Fe(III) and Mn(IV) oxides. When electrons are transferred to a solid substrate, they may be (1) carried directly to the acceptor via outer membrane cytochromes, (2) carried by electron shuttle molecules, (3) transferred along conductive protein nanowires, or (4) conducted through other extracellular matrices. No matter what the electron acceptor is, in the laboratory, bacterial biofilms are frequently studied while growing on inert surfaces, incapable of electron transfer. However, in natural environments, as well as many industrial and biotechnology settings, biofilms grow on electrically active surfaces. In this review, we propose that the study of bacterial biofilms on redox-active surfaces is important both for the development of industrial processes, such as microbial fuel cells and wastewater treatment systems, as well as for our understanding of how these communities of microbes affect global nutrient cycling, other geobiological processes, and even human disease.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nealson, K.H., Rye, R.R., Treatise on Geochemistry (Elsevier Pergammon, Amsterdam, 2003), Vol. 8, pp. 41.CrossRefGoogle Scholar
2.White, D.J., The Physiology and Biochemistry of Prokaryotes, 3rd Edition (Oxford University Press, New York, NY, 2007).Google Scholar
3.Stumm, W., Morgan, J.J., Aquatic Chemistry, 3rd Edition (Wiley-Interscience, New York, NY, 1996).Google Scholar
4.Madigan, M.T., Martinko, J.M., Brock Biology of Microorganisms, 11th Edition (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).Google Scholar
5.Aguilar, C., Nealson, K.H., Can. J. Fish. Aquat. Sci. 51, 185 (1994).CrossRefGoogle Scholar
6.Dean, W., Moore, W.S., Nealson, K.H., Chem. Geol. 34, 53 (1981).CrossRefGoogle Scholar
7.Myers, C.R., Nealson, K.H., Science 240, 1319 (1988).CrossRefGoogle Scholar
8.Myers, C.R., Nealson, K.H., J. Bacteriol. 172, 6232 (1990).CrossRefGoogle Scholar
9.Lovley, D.R., Phillips, E.J., Appl. Environ. Microbiol. 54, 1472 (1988).Google Scholar
10.Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J., Gorby, Y.A., Goodwin, S., Arch. Microbiol. 159, 336 (1993).CrossRefGoogle Scholar
11.Marsili, E., Proc. Natl. Acad. Sci. U.S.A. 105, 3968 (1988).CrossRefGoogle Scholar
12.von Canstein, H., Ogawa, J., Shimuzu, S., Lloyd, J.R., Appl. Environ. Microbiol. 74, 615 (2008).CrossRefGoogle Scholar
13.Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.-S., Kim, B.-H., Kim, K.-S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H., Fredrickson, J.K., Proc. Natl. Acad. Sci. U.S.A. 103, 11358 (1996).CrossRefGoogle Scholar
14.El-Naggar, M., Gorby, Y.A., Xia, W., Nealson, K.H., Biophys. J. 95, 10 (2008).CrossRefGoogle Scholar
15.El-Naggar, M., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.W., Nealson, K.H., Gorby, Y.A., Proc. Natl. Acad. Sci. U.S.A. 107, 18127 (2010).CrossRefGoogle Scholar
16.Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R., Nature 435, 1098 (2005).CrossRefGoogle Scholar
17.Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., Lovley, D.R., Appl. Environ. Microbiol. 72, 7345 (2006).CrossRefGoogle Scholar
18.Kato, S., Nakamura, R., Kai, F., Watanabe, K., Hashimoto, K., Environ. Microbiol. 12, 3114 (2010).CrossRefGoogle Scholar
19.Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., Sayama, M., Nature 463, 1071 (2010).CrossRefGoogle Scholar
20.Kim, B.H., Biotechnol. Tech. 13, 475 (1999).CrossRefGoogle Scholar
21.McLean, J.S., Wange, G., Gorby, Y.A., Wainstein, M., McQuaid, J., Ishii, S.I., Bretschger, O., Beyenal, H., Nealson, K.H.. Environ. Sci. Technol. 44, 2721 (2010).CrossRefGoogle Scholar
22.Rabaey, K., Rodriguez, J., Blackall, L.L., Keller, J., Gross, P., Batstone, D., Verstraete, W., Nealson, K.H., ISME J. 1, 9 (2007).CrossRefGoogle Scholar
23.Rabaey, K., Rozendal, R.A., Nat. Rev. Microbiol. 8, 706 (2010).CrossRefGoogle Scholar
24.Logan, B.E., Regan, J.M., Trends Microbiol. 14, 512 (2006).CrossRefGoogle Scholar
25.Logan, B.E., Nat. Rev. Microbiol. 7, 375 (2009).CrossRefGoogle Scholar
26.Lovley, D.R., Nat. Rev. Microbiol. 17, 327 (2006).Google Scholar
27.Lovley, D.R., Curr. Opin. Biotechnol. 19, 564 (2008).CrossRefGoogle Scholar
28.Beliaev, A., Saffarini, D., J. Bacteriol. 180, 6292 (1998).Google Scholar
29.Myers, J.M., Muers, C.R., Appl. Environ. Microbiol. 67, 260 (2001).CrossRefGoogle Scholar
30.Bretschger, O., Obraztsova, A., Sturm, C.A., Chang, I.S., Gorby, Y.A., Reed, S.B., Culley, D.E., Reardon, C.L., Barua, S., Romine, M.F., Zhou, J., Beliaev, A.S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.H., Fredrickson, J.K., Nealson, K.H., Appl. Environ. Microbiol. 73, 7003 (2007).CrossRefGoogle Scholar
31.Hall-Stoodley, L., Costerton, J.W., Stoodley, P., Nat. Rev. Microbiol. 2 (2), 95 (2004).CrossRefGoogle Scholar
32.Kan, J., Hsu, L., Cheung, A.C., Pirbazari, M., Nealson, K.H., Environ Sci. Technol. 45, 1139 (2011).CrossRefGoogle Scholar
33.Thrash, J.C., Coates, J.D., Environ. Sci. Technol. 42, 3921 (2008).CrossRefGoogle Scholar
34.Torres, C.I., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A.K., Wanger, G., Gorby, Y.A., Rittmann, B.E., Environ. Sci. Technol. 43, 9519 (2009).CrossRefGoogle Scholar
35.Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R., Biosens. Bioelectron. 24, 906 (2008).CrossRefGoogle Scholar
36.Hansen, S.K., Rainey, P.B., Haagensen, J.A., Molin, S., Nature 445, 533 (2007).CrossRefGoogle Scholar
37.Boles, B.R., Singh, P.K., Proc. Natl. Acad. Sci. U.S.A. 105, 12503 (2008).CrossRefGoogle Scholar
38.Kraigsley, A.M., Finkel, S.E., FEMS Microbiol. Lett. 293, 135 (2009).CrossRefGoogle Scholar
39.Stumm, W., Morgan, J.J., Aquatic chemistry: Chemical equilibria and rates in natural waters. 3rd edition. (John Wiley & Sons, Inc. New York, 1996), p. 1022.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electron flow and biofilms
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electron flow and biofilms
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electron flow and biofilms
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *