Skip to main content Accessibility help
Hostname: page-component-5d6d958fb5-mt5cb Total loading time: 0.705 Render date: 2022-11-26T13:37:32.140Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Ferroelectric and multiferroic tunnel junctions

Published online by Cambridge University Press:  17 February 2012

E.Y. Tsymbal
University of Nebraska;
A. Gruverman
University of Nebraska;
V. Garcia
Unité Mixte de Physique CNRS/Thales, France;
M. Bibes
Unité Mixte de Physique CNRS/Thales, France;
A. Barthélémy
Unité Mixte de Physique CNRS/Thales, France;
Get access


The phenomenon of electron tunneling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunneling in magnetic tunnel junctions has aroused considerable interest and development. In parallel with this endeavor, recent advances in thin-film ferroelectrics have demonstrated the possibility of achieving stable and switchable ferroelectric polarization in nanometer-thick films. This discovery opened the possibility of using thin-film ferroelectrics as barriers in magnetic tunnel junctions, thus merging the fields of magnetism, ferroelectricity, and spin-polarized transport into an exciting and promising area of novel research. Nowadays, this research has become an important constituent of a broader effort in multiferroic materials and heterostructures that involves rich fundamental science and offers a potential for applications in novel multifunctional devices. The purpose of this article is to review recent developments in ferroelectric and multiferroic tunnel junctions. Starting from the concept of electron tunneling, we first discuss the key properties of magnetic tunnel junctions and then assess key functional characteristics of ferroelectric and multiferroic tunnel junctions. We discuss the recent demonstrations of giant resistive switching observed in ferroelectric tunnel junctions and the new concept of electrically controlling the spin polarization in magnetic tunnel junctions with a ferroelectric tunnel barrier.

Research Article
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Frenkel, J., Phys. Rev. 36, 1604 (1930).CrossRefGoogle Scholar
2.Josephson, B.D., Rev. Mod. Phys. 46, 251 (1974).CrossRefGoogle Scholar
3.Binnig, G., Rohrer, H., Rev. Mod. Phys. 59, 615 (1987).CrossRefGoogle Scholar
4.Fowler, R.H., Nordheim, L., Proc. R. Soc. London 119, 173 (1928).CrossRefGoogle Scholar
5.Chappert, C., Fert, A., Van Dau, F.N., Nat. Mater. 6, 813 (2007).CrossRefGoogle Scholar
6.Tsymbal, E.Y., Žutić, I., Eds. Handbook of Spin Transport and Magnetism, (Taylor & Francis, NY, 2011).Google Scholar
7.Tedrow, P.M., Meservey, R., Phys. Rev. Lett. 26, 192 (1971).CrossRefGoogle Scholar
8.Jullière, M., Phys. Lett. A 54, 225 (1975).CrossRefGoogle Scholar
9.Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).CrossRefGoogle Scholar
10.Miyazaki, T., Tezuka, N.J., J. Magn. Mag. Mater. 139, L231 (1995).CrossRefGoogle Scholar
11.Tsymbal, E.Y., Mryasov, O.N., LeClair, P.R., J. Phys.: Condens. Matter 15, R109 2003; E.Y. Tsymbal, K.D. Belashchenko, J. Velev, S.S. Jaswal, M. van Schilfgaarde, I.I. Oleynik, D.A. Stewart Prog. Mater. Science. 52, 401 (2007).Google Scholar
12.Wang, D., Nordman, C., Daughton, J., Qian, Z., Fink, J., IEEE Trans. Magn. 40, 2269 (2004).CrossRefGoogle Scholar
13.Monsma, D.J., Parkin, S.S.S., Appl. Phys. Lett. 77, 720 (2000).CrossRefGoogle Scholar
14.Butler, W.H., Zhang, X.-G., Schulthess, T.C., MacLaren, J.M., Phys. Rev. B 63, 054416 (2001).CrossRefGoogle Scholar
15.Mathon, J., Umerski, A., Phys. Rev. B 63, R220403 (2001).CrossRefGoogle Scholar
16.Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Nat. Mater. 3, 862 (2004).CrossRefGoogle Scholar
17.Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K., Nat. Mater. 3, 868 (2004).CrossRefGoogle Scholar
18.Yuasa, S., Fukushima, A., Kubota, H., Suzuki, Y., Ando, K., Appl. Phys. Lett. 89, 042505 (2006).CrossRefGoogle Scholar
19.Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H., Appl. Phys. Lett. 93, 082508 (2008).CrossRefGoogle Scholar
20.Tsymbal, E.Y., Kohlstedt, H., Science 313, 181 (2006).CrossRefGoogle Scholar
21.Waser, R., Aono, M., Nat. Mater. 6, 833 (2007).CrossRefGoogle Scholar
22.Esaki, L., Laibowitz, R.B., Stiles, P.J., IBM Tech. Discl. Bull. 13, 2161 (1971).Google Scholar
23.Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C., Science 304, 1650 (2004).CrossRefGoogle Scholar
24.Lichtensteiger, C., Triscone, J.-M., Junquera, J., Ghosez, P., Phys. Rev. Lett. 94, 047603 (2005).CrossRefGoogle Scholar
25.Tenne, D.A., Bruchhausen, A., Lanzillotti-Kimura, N.D., Fainstein, A., Katiyar, R.S., Cantarero, A., Soukiassian, A., Vaithyanathan, V., Haeni, J.H., Tian, W., Schlom, D.G., Choi, K.J., Kim, D.M., Eom, C.B., Sun, H.P., Pan, X.Q., Li, Y.L., Chen, L.Q., Jia, Q.X., Nakhmanson, S.M., Rabe, K.M., Xi, X.X., Science 313, 1614 (2006).CrossRefGoogle Scholar
26.Zhuravlev, M.Y., Sabirianov, R.F., Jaswal, S.S., Tsymbal, E.Y., Phys. Rev. Lett. 94, 246802 (2005); Phys. Rev. Lett. 102, 169901 (2009).CrossRefGoogle Scholar
27.Velev, J.P., Duan, C.-G., Belashchenko, K.D., Jaswal, S.S., Tsymbal, E.Y., Phys. Rev. Lett. 98, 137201 (2007).CrossRefGoogle Scholar
28.Kohlstedt, H., Pertsev, N.A., Rodríguez Contreras, J., Waser, R., Phys. Rev. B 72, 125341 (2005).CrossRefGoogle Scholar
29.Hinsche, N.F., Fechner, M., Bose, P., Ostanin, S., Henk, J., Mertig, I., Zahn, P., Phys. Rev. B 82, 214110 (2010).CrossRefGoogle Scholar
30.Wortmann, D., Blügel, S., Phys. Rev. B 83, 155114 (2011).CrossRefGoogle Scholar
31.Burton, J.D., Tsymbal, E.Y., Phys. Rev. B 80, 174406 (2009); Phys. Rev. Lett. 106, 157203 (2011).CrossRefGoogle Scholar
32.Kohlstedt, H., Petraru, A., Szot, K., Ruediger, A., Meuffels, P., Haselier, H., Waser, R., Nagarajan, V., Appl. Phys. Lett. 92, 062907 (2008).CrossRefGoogle Scholar
33.Rodríguez Contreras, J., Kohlstedt, H., Poppe, U., Waser, R., Buchal, C., Pertsev, N.A., Appl. Phys. Lett. 83, 4595 (2003).CrossRefGoogle Scholar
34.Gruverman, A., Auciello, O., Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).CrossRefGoogle Scholar
35.Yoshida, C., Yoshida, A., Tamura, H., Appl. Phys. Lett. 75, 1449 (1999).CrossRefGoogle Scholar
36.Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthélémy, A., Bibes, M., Nature 460, 81 (2009).CrossRefGoogle Scholar
37.Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A.P., Kalinin, S.V., Science 324, 1421 (2009).CrossRefGoogle Scholar
38.Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H.W., Folkman, C.M., Zhuravlev, M.Y., Felker, D., Rzchowski, M., Eom, C.-B., Tsymbal, E.Y., Nano Lett. 9, 3539 (2009).CrossRefGoogle Scholar
39.Crassous, A., Garcia, V., Bouzehouane, K., Fusil, S., Vlooswijk, A.H.G., Rispens, G., Noheda, B., Bibes, M., Barthélémy, A., Appl. Phys. Lett. 96, 042901 (2010).CrossRefGoogle Scholar
40.Nagarajan, V., Junquera, J., He, J.Q., Jia, C.L., Waser, R., Lee, K., Kim, Y.K., Baik, S., Zhao, T., Ramesh, R., Ghosez, P., Rabe, K.M., J. Appl. Phys. 100, 051609 (2006).CrossRefGoogle Scholar
41.Pantel, D., Goetze, S., Hesse, D., Alexe, M., ACS Nano 5, 6032 2011; A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N.D. Mathur, M. Bibes, A. Barthélémy Nature Nanotech. doi: 10.1038/nnano.2011.213.CrossRefGoogle Scholar
42.Schmid, H., Ferroelectrics 161, 1 (1994).CrossRefGoogle Scholar
43.Fiebig, M., J. Phys. D 38, R123 (2005).CrossRefGoogle Scholar
44.Eerenstein, W., Mathur, N.D., Scott, J.F., Nature 442, 759 (2006).CrossRefGoogle Scholar
45.Ramesh, R., Spaldin, N.A., Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
46.Bibes, M., Barthélémy, A., IEEE Trans. Electron Devices 54, 1003 (2007).CrossRefGoogle Scholar
47.Wang, K.F., Liu, J.-M., Ren, Z.F., Adv. Phys. 58, 321 (2009).CrossRefGoogle Scholar
48.Velev, J.P., Jaswal, S.S., Tsymbal, E.Y., Philos. Trans. R. Soc. London, Ser. A 369, 3069 (2011).CrossRefGoogle Scholar
49.Zhuravlev, M.Y., Jaswal, S.S., Tsymbal, E.Y., Sabirianov, R.F., Appl. Phys. Lett. 87, 222114 (2005).CrossRefGoogle Scholar
50.Zhuravlev, M.Y., Maekawa, S., Tsymbal, E.Y., Phys. Rev. B 81, 104419 (2010).CrossRefGoogle Scholar
51.Velev, J.P., Duan, C.-G., Burton, J.D., Smogunov, A., Niranjan, M.K., Tosatti, E., Jaswal, S.S., Tsymbal, E.Y., Nano Lett. 9, 427 (2009).CrossRefGoogle Scholar
52.Niranjan, M.K., Burton, J.D., Velev, J.P., Jaswal, S.S., Tsymbal, E.Y., Appl. Phys. Lett. 95, 052501 (2009).CrossRefGoogle Scholar
53.Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., Barthélémy, A., Science 327, 1106 (2010).CrossRefGoogle Scholar
54.Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthélémy, A., Fert, A., Nat. Mater. 6, 296 (2007).CrossRefGoogle Scholar
55.Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y., Phys. Rev. Lett. 97, 047201 (2006).CrossRefGoogle Scholar
56.Valencia, S., Crassous, A., Bocher, L., Garcia, V., Moya, X., Cherifi, R.O., Deranlot, C., Bouzehouane, K., Fusil, S., Zobelli, A., Gloter, A., Mathur, N.D., Gaupp, A., Abrudan, R., Radu, F., Barthélémy, A., Bibes, M., Nat. Mater. 10, 753 (2011).CrossRefGoogle Scholar
57.Yin, Y.W., Raju, M., Hu, W.J., Weng, X.J., Li, X.G., Li, Q., J. Appl. Phys. 109, 07D915 (2011).CrossRefGoogle Scholar
58.Hambe, M., Petraru, A., Pertsev, N.A., Munroe, P., Nagarajan, V., Kohlstedt, H., Adv. Funct. Mater. 20, 2436 (2010).CrossRefGoogle Scholar
59.Hutchby, J.A., Cavin, R., Zhirnov, V., Brewer, J.E., Bourianoff, G., Computer 41, 28 (2008).CrossRefGoogle Scholar
60.Zubko, P., Triscone, J.-M., Nature 460, 45 (2009).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ferroelectric and multiferroic tunnel junctions
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Ferroelectric and multiferroic tunnel junctions
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Ferroelectric and multiferroic tunnel junctions
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *