Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-s82fj Total loading time: 0.502 Render date: 2022-10-04T01:21:58.507Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

Materials challenges in rechargeable lithium-air batteries

Published online by Cambridge University Press:  09 May 2014

D.G. Kwabi
Affiliation:
Massachusetts Institute of Technology, USA; dkwabi@mit.edu
N. Ortiz-Vitoriano
Affiliation:
Massachusetts Institute of Technology, USA; nagore@mit.edu
S.A. Freunberger
Affiliation:
Graz University of Technology, Austria; freunberger@tugraz.at
Y. Chen
Affiliation:
University of St. Andrews, UK; yc21@st-andrews.ac.uk
N. Imanishi
Affiliation:
Mie University, Japan; imanishi@chem.mie-u.ac.jp
P.G. Bruce
Affiliation:
University of St. Andrews, UK; pgb1@st-andrews.ac.uk
Y. Shao-Horn
Affiliation:
Massachusetts Institute of Technology, USA; shaohorn@mit.edu
Get access

Abstract

Lithium-air batteries have received extraordinary attention recently owing to their theoretical gravimetric energies being considerably higher than those of Li-ion batteries. There are, however, significant challenges to practical implementation, including low energy efficiency, cycle life, and power capability. These are due primarily to the lack of fundamental understanding of oxygen reduction and evolution reaction kinetics and parasitic reactions between oxygen redox intermediate species and nominally inactive battery components such as carbon in the oxygen electrode and electrolytes. In this article, we discuss recent advances in the mechanistic understanding of oxygen redox reactions in nonaqueous electrolytes and the search for electrolytes and electrode materials that are chemically stable in the oxygen electrode. In addition, methods to protect lithium metal against corrosion by water and dendrite formation in aqueous lithium-air batteries are discussed. Further materials innovations lie at the heart of research and development efforts that are needed to enable the development of lithium-oxygen batteries with enhanced round-trip efficiency and cycle life.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, Y.-C., Gallant, B.M., Kwabi, D.G., Harding, J.R., Mitchell, R.R., Whittingham, M.S., Shao-Horn, Y., Energy Environ. Sci. 6, 750 (2013).CrossRef
Lee, J.-S., Tai Kim, S., Cao, R., Choi, N.-S., Liu, M., Lee, K.T., Cho, J., Adv. Energy Mater. 1, 34 (2011).CrossRef
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Nat. Mater. 11, 19 (2012).CrossRef
Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., J. Electrochem. Soc. 159, R1 (2012).CrossRef
Bruce, P.G., Hardwick, L.J., Abraham, K.M., MRS Bull. 36, 506 (2011).CrossRef
Shao, Y., Park, S., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J., ACS Catal. 2, 844 (2012).CrossRef
Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., Science 337, 563 (2012).CrossRef
Gallant, B.M., Mitchell, R.R., Kwabi, D.G., Zhou, J., Zuin, L., Thompson, C.V., Shao-Horn, Y., J. Phys. Chem. C 116, 20800 (2012).CrossRef
Oh, S.H., Nazar, L.F., Adv. Energy Mater. 2, 903 (2012).CrossRef
Wang, Z.-L., Xu, D., Xu, J.-J., Zhang, L.-L., Zhang, X.-B., Adv. Funct. Mater. 22, 3699 (2012).CrossRef
Hasegawa, S., Imanishi, N., Zhang, T., Xie, J., Hirano, A., Takeda, Y., Yamamoto, O., J. Power Sources 189, 371 (2009).CrossRef
Imanishi, N., Hasegawa, S., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., J. Power Sources 185, 1392 (2008).CrossRef
McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C., J. Phys. Chem. Lett. 2, 1161 (2011).CrossRef
Ikeda, H., Hoch, R., Hausslein, R., US Patent 05879836 (1999).
Xia, H., Lu, L., Ceder, G., J. Power Sources 159, 1422 (2006).CrossRef
Zhu, Y., Wang, C., J. Phys. Chem. C 114, 2830 (2010).CrossRef
Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G., Science 311, 977 (2006).CrossRef
Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., Tarascon, J.-M., ChemSusChem 1, 348 (2008).CrossRef
Gallant, B.M., Kwabi, D.G., Mitchell, R.R., Zhou, J., Thompson, C.V., Shao-Horn, Y., Energy Environ. Sci. 6, 2518 (2013).CrossRef
Mitchell, R.R., Gallant, B.M., Thompson, C.V., Shao-Horn, Y., Energy Environ. Sci. 4, 2952 (2011).CrossRef
Black, R., Oh, S.H., Lee, J., Yim, T., Adams, B., Nazar, L.F., J. Am. Chem. Soc. 134, 2902 (2012).CrossRef
Xu, D., Wang, Z., Xu, J., Zhang, L., Zhang, X., Chem. Commun. 48, 6948 (2012).CrossRef
Mitchell, R.R., Gallant, B.M., Shao-Horn, Y., Thompson, C.V., J. Phys. Chem. Lett. 4, 1060 (2013).CrossRef
Hummelshøj, J.S., Luntz, A.C., Nørskov, J.K., J. Chem. Phys. 138, 034703 (2013).CrossRef
Peng, Z., Freunberger, S.A., Hardwick, L.J., Chen, Y., Giordani, V., Bardé, F., Novák, P., Graham, D., Tarascon, J.-M., Bruce, P.G., Angew. Chem. Int. Ed. Engl. 50, 6351 (2011).CrossRef
Adams, B.D., Radtke, C., Black, R., Trudeau, M.L., Zaghib, K., Nazar, L.F., Energy Environ. Sci. 6, 1772 (2013).CrossRef
Zhai, D., Wang, H.-H., Yang, J., Lau, K.C., Li, K., Amine, K., Curtiss, L.A., J. Am. Chem. Soc. 135, 15364 (2013).CrossRef
Zhong, L., Mitchell, R.R., Liu, Y., Gallant, B.M., Thompson, C.V., Huang, J.Y., Mao, S.X., Shao-Horn, Y., Nano Lett. 13, 2209 (2013).CrossRef
McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshøj, J.S., Nørskov, J.K., Luntz, A.C., J. Phys. Chem. Lett. 3, 997 (2012).CrossRef
Itkis, D.M., Semenenko, D.A., Kataev, E.Y., Belova, A.I., Neudachina, V.S., Sirotina, A.P., Hävecker, M., Teschner, D., Knop-Gericke, A., Dudin, P., Barinov, A., Goodilin, E.A., Shao-Horn, Y., Yashina, L.V., Nano Lett. 13, 4697 (2013).CrossRef
McCloskey, B.D., Valery, A., Luntz, A.C., Gowda, S.R., Wallraff, G.M., Garcia, J.M., Mori, T., Krupp, L.E., J. Phys. Chem. Lett. 4, 2989 (2013).CrossRef
Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., Bruce, P.G., J. Am. Chem. Soc. 135, 494 (2012).CrossRef
Lu, Y.-C., Crumlin, E.J., Veith, G.M., Harding, J.R., Mutoro, E., Baggetto, L., Dudney, N.J., Liu, Z., Shao-Horn, Y., Sci. Rep. 2, 715 (2012).CrossRef
Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., Chen, Y., Liu, Z., Bruce, P.G., Nat. Mater. 12, 1050 (2013).CrossRef
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S., Iba, H., Electrochemistry 78, 403 (2010).CrossRef
Xu, W., Viswanathan, V.V., Wang, D., Towne, S.A., Xiao, J., Nie, Z., Hu, D., Zhang, J.-G., J. Power Sources 196, 3894 (2011).CrossRef
Bryantsev, V.S., Uddin, J., Giordani, V., Walker, W., Addison, D., Chase, G.V., J. Electrochem. Soc. 160, A160 (2012).CrossRef
Sawyer, D.T., Roberts, J.L. Jr., J. Electroanal. Chem. 12, 90 (1966).
Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., J. Phys. Chem. C 113, 20127 (2009).CrossRef
Younesi, R., Hahlin, M., Björefors, F., Johansson, P., Edström, K., Chem. Mater. 25, 77 (2012).CrossRef
Herranz, J., Garsuch, A., Gasteiger, H.A., J. Phys. Chem. C 116, 19084 (2012).CrossRef
Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D., J. Am. Chem. Soc. 135, 2076 (2013).CrossRef
Mizuno, F., Takechi, K., Higashi, S., Shiga, T., Shiotsuki, T., Takazawa, N., Sakurabayashi, Y., Okazaki, S., Nitta, I., Kodama, T., Nakamoto, H., Nishikoori, H., Nakanishi, S., Kotani, Y., Iba, H., J. Power Sources 228, 47 (2013).CrossRef
Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Bardé, F., Bruce, P.G., Angew. Chem. Int. Ed. Engl. 50, 8609 (2011).CrossRef
Laoire, C., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Electrochem. Soc. 158, A302 (2011).CrossRef
Leskes, M., Drewett, N.E., Hardwick, L.J., Bruce, P.G., Goward, G.R., Grey, C.P., Angew. Chem. Int. Ed. Engl. 51, 8560 (2012).CrossRef
Chen, Y., Freunberger, S.A., Peng, Z., Bardé, F., Bruce, P.G., J. Am. Chem. Soc. 134, 7952 (2012).CrossRef
Mizuno, F., Nakanishi, S., Shirasawa, A., Takechi, K., Shiga, T., Nishikoori, H., Iba, H., Electrochemistry 79, 876 (2011).CrossRef
Takechi, K., Higashi, S., Mizuno, F., Nishikoori, H., Iba, H., Shiga, T., ECS Electrochem. Lett. 1, A27 (2012).CrossRef
Monaco, S., Arangio, A.M., Soavi, F., Mastragostino, M., Paillard, E., Passerini, S., Electrochim. Acta 83, 94 (2012).CrossRef
Allen, C.J., Hwang, J., Kautz, R.A., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Phys. Chem. C 116, 20755 (2012).CrossRef
Schwenke, K.U., Meini, S., Wu, X., Gasteiger, H.A., Piana, M., Phys. Chem. Chem. Phys. 15, 11830 (2013).CrossRef
Aurbach, D., Daroux, M., Faguy, P., Yeager, E., J. Electroanal. Chem. Interfacial Electrochem. 297, 225 (1991).CrossRef
Bryantsev, V.S., Giordani, V., Walker, W., Blanco, M., Zecevic, S., Sasaki, K., Uddin, J., Addison, D., Chase, G.V., J. Phys. Chem. A 115, 12399 (2011).CrossRef
Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., J. Phys. Chem. C 114, 9178 (2010).CrossRef
Allen, C.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Phys. Chem. Lett. 2, 2420 (2011).CrossRef
Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B., Nat. Chem. 4, 579 (2012).CrossRef
Lu, Y.-C., Gasteiger, H.A., Shao-Horn, Y., J. Am. Chem. Soc. 133 (47), 19048 (2011).CrossRef
Oh, S.H., Black, R., Pomerantseva, E., Lee, J.-H., Nazar, L.F., Nat. Chem. 4, 1004 (2012).CrossRef
Younesi, R., Hahlin, M., Treskow, M., Scheers, J., Johansson, P., Edstrom, K., J. Phys. Chem. C 116, 18597 (2012).CrossRef
Bryantsev, V.S., Faglioni, F., J. Phys. Chem. A 116, 7128 (2012).CrossRef
Ryan, K.R., Trahey, L., Ingram, B.J., Burrell, A.K., J. Phys. Chem. C 116, 19724 (2012).CrossRef
Clover, A.M., J. Am. Chem. Soc. 44, 1107 (1922).CrossRef
Sawyer, D.T., Valentine, J.S., Acc. Chem. Res. 14, 393 (1981).CrossRef
Peover, M.E., White, B.S., Electrochim. Acta 11, 1061 (1966).CrossRef
Merritt, M.V, Sawyer, D.T., J. Org. Chem. 35, 2157 (1970).CrossRef
Jang, Y.-I., Neudecker, B.J., Dudney, N.J., Electrochem. Solid-State Lett. 4, A74 (2001).CrossRef
Levi, M.D., Aurbach, D., J. Phys. Chem. B 101, 4630 (1997).CrossRef
Visco, S., Katz, B., Chu, M.Y., De Jonghe, L., Eds., Symposium on Scalable Energy Storage: Beyond Lithium-Ion (IBM, Almaden Institute, San Jose, CA 2009).Google Scholar
Zhang, X.-W., Li, Y., Khan, S.A., Fedkiw, P.S., J. Electrochem. Soc. 151, A1257 (2004).CrossRef
Rao, B.M.L., Francis, R.W., Christopher, H.A., J. Electrochem. Soc. 124, 1490 (1977).CrossRef
Megahed, S., Scrosati, B., Electrochem. Soc. Interface 4, 34 (1995).
Monroe, C., Newman, J., J. Electrochem. Soc. 152, A396 (2005).CrossRef
Stevens, P., Toussaint, G., Caillon, G., Viaud, P., Vinatier, P., Cantau, C., Fichet, O., Sarrazin, C., Mallouki, M., ECS Trans. 28, 1 (2010).
Capsoni, D., Bini, M., Ferrari, S., Quartarone, E., Mustarelli, P., J. Power Sources 220, 253 (2012).CrossRef
Murugan, R., Thangadurai, V., Weppner, W., Angew. Chem. Int. Ed. Engl. 46, 7778 (2007).CrossRef
Kumar, B., Kumar, J., Leese, R., Fellner, J.P., Rodrigues, S.J., Abraham, K.M., J. Electrochem. Soc. 157, A50 (2010).CrossRef
Rosso, M., Gobron, T., Brissot, C., Chazalviel, J.-N., Lascaud, S., J. Power Sources 9798, 804 (2001).CrossRef
Brissot, C., Rosso, M., Chazalviel, J.-N., Lascaud, S., J. Power Sources 8182, 925 (1999).CrossRef
Liu, S., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Yang, J., J. Electrochem. Soc. 157, A1092 (2010).CrossRef
Liu, S., Wang, H., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Yang, J., J. Power Sources 196, 7681 (2011).CrossRef
Zhang, T., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O., Electrochem. Solid-State Lett. 14, A45 (2011).CrossRef
Sannier, L., Bouchet, R., Rosso, M., Tarascon, J.-M., J. Power Sources 158, 564 (2006).CrossRef
Xu, W., Xu, K., Viswanathan, V.V., Towne, S.A., Hardy, J.S., Xiao, J., Nie, Z., Hu, D., Wang, D., Zhang, J.-G., J. Power Sources 196, 9631 (2011).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Materials challenges in rechargeable lithium-air batteries
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Materials challenges in rechargeable lithium-air batteries
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Materials challenges in rechargeable lithium-air batteries
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *