Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.517 Render date: 2022-10-05T15:25:01.165Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Article contents

Quantum photonic networks in diamond

Published online by Cambridge University Press:  06 February 2013

Marko Lončar
School of Engineering and Applied Sciences, Harvard University;
Andrei Faraon
Applied Physics and Materials Science, California Institute of Technology;
Get access


Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond’s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments.

Research Article
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., Scarsbrook, G.A., Science 297, 1670 (2002).CrossRef
Feve, J.-P.M., Shortoff, K.E., Bohn, M.J., Brasseur, J.K., Opt. Exp. 19, 913 (2011).CrossRef
Zaitsev, A.M., Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Germany, 2001).CrossRefGoogle Scholar
Maurer, P.C., Kucsko, G., Latta, C., Jiang, L., Yao, N.Y., Bennett, S.D., Pastawski, F., Hunger, D., Chisholm, N., Markham, M., Twitchen, D.J., Cirac, J.I., Lukin, M.D., Science 336, 1283 (2012).CrossRef
Dutt, M.V.G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A.S., Hemmer, P.R., Lukin, M.D., Science 316, 1312 (2007).CrossRef
Jiang, L., Hodges, J.S., Maze, J.R., Maurer, P., Taylor, J.M., Cory, D.G., Hemmer, P.R., Walsworth, R.L., Yacoby, A., Zibrov, A.S., Lukin, M.D., Science 326, 267 (2009).CrossRef
van der Sar, T., Wang, Z.H., Blok, M.S., Bernien, H., Taminiau, T.H., Toyli, D.M., Lidar, D.A., Awschalom, D., Hanson, R., Dobrovitski, V.V., Nature 484, 82 (2012).CrossRef
Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D., Nature 466, 730 (2010).CrossRef
Purcell, E.M., Phys. Rev. 69, 681 (1946).CrossRef
Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Nature 455, 648 (2008).CrossRef
Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Gurudev Dutt, M.V., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nature 455, 644 (2008).CrossRef
Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F.A., Hanson, R., Nature 477, 574 (2011).CrossRef
Bernien, H., Childress, L., Robledo, L., Markham, M., Twitchen, D., Hanson, R., Phys. Rev. Lett. 108, 043604 (2012).CrossRef
Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J., Science 320, 1326 (2008).CrossRef
Park, Y.-S., Cook, A.K., Wang, H., Nano Lett. 6, 2075 (2006).CrossRef
Englund, D., Shields, B., Rivoire, K., Hatami, F., Vučković, J., Park, H., Lukin, M.D., Nano Lett. 10, 3922 (2010).CrossRef
van der Sar, T., Hagemeier, J., Pfaff, W., Heeres, E.C., Thon, S.M., Kim, H., Petroff, P.M., Oosterkamp, T.H., Bouwmeester, D., Hanson, R., App. Phys. Lett. 98, 193103 (2011).CrossRef
Barclay, P.E., Fu, K.-M., Santori, C., Beausoleil, R.G., Opt. Express 17, 9588 (2009).CrossRef
Barclay, P.E., Fu, K.-M.C., Santori, C., Beausoleil, R.G., Appl. Phys. Lett. 95, 191115 (2009).CrossRef
Barclay, P.E., Santori, C., Fu, K.-M., Beausoleil, R.G., Painter, O., Opt. Express 17, 8081 (2009).CrossRef
Schietinger, S., Barth, M., Aichele, T., Benson, O., Nano Lett. 9, 1694 (2009).CrossRef
Hausmann, B., Khan, M., Zhang, Y., Babinec, T.M., Martinick, K., McCutcheon, M., Hemmer, P.R., Loncar, M., Diam. Relat. Mater. 19, 621 (2010).CrossRef
Babinec, T., Hausmann, B.M., Khan, M., Zhang, Y., Maze, J., Hemmer, P.R., Loncar, M., Nature Nanotech. 5, 195 (2010).CrossRef
Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., Yacoby, A., Nature Nanotechnol. 7, 320 (2012).CrossRef
Siyushev, P., Kaiser, F., Jacques, V., Gerhardt, I., Bischof, S., Fedder, H., Dodson, J., Markham, M., Twitchen, D., Jelezko, F., Wrachtrup, J., Appl. Phys. Lett. 97, 241902 (2010).CrossRef
Hadden, J.P., Harrison, J.P., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L.D., Patton, B.R., O’Brien, J.L., Rarity, J.G., Appl. Phys. Lett. 97, 241901 (2010).CrossRef
Vahala, K.J., Nature 424, 839 (2003).CrossRef
Bulu, I., Babinec, T., Hausmann, B., Choy, J.T., Loncar, M., Opt. Express 19, 5268 (2011).CrossRef
Choy, J.T., Hausmann, B.J.M., Babinec, T.M., Bulu, I., Khan, M., Maletinsky, P., Yacoby, A., Loncar, M., Nat. Photon. 5, 738 (2011).CrossRef
Aharonovich, I., Greentree, A.D., Prawer, S., Nature Photon. 5, 397 (2011).CrossRef
Magyar, A.P., Lee, J.C., Limarga, A.M., Aharonovich, I., Rol, F., Clarke, D.R., Huang, M., Hu, E.L., Appl. Phys. Lett. 99, 081913 (2011).CrossRef
Bayn, I., Meyler, B., Lahav, A., Salzman, J., Kalish, R., Fairchild, B.A., Prawer, S., Barth, M., Benson, O., Wolf, T., Siyushev, P., Jelezko, F., Wrachtrup, J., Diam. Relat. Mater. 20, 937 (2011).CrossRef
Gsell, S., Bauer, T., Goldfuss, J., Shreck, M., Strizker, B., Appl. Phys. Lett. 84, 4541 (2004).CrossRef
Riedrich-Möller, J., Kipfstuhl, L., Hepp, C., Neu, E., Pauly, C., Mücklich, F., Baur, A., Wandt, M., Wolff, S., Fischer, M., Gsell, S., Schreck, M., Becher, C., Nature Nanotech. 7, 69 (2012).CrossRef
Babinec, T., Choy, J.T., Smith, K., Khan, M., Loncar, M., J. Vac. Sci. Technol. B 29, 010601 (2011).CrossRef
Bayn, I., Meyler, B., Salzman, J., Kalish, R., New J. Phys. 13, 025018 (2011).CrossRef
Faraon, A., Barclay, P.E., Santori, C., Fu, K.-M.C., Beausoleil, R.G., Nature Photon. 5, 301 (2011).CrossRef
Faraon, A., Santori, C., Huang, Z., Acosta, V.M., Beausoleil, R.G., Phys. Rev. Lett. 109, 033604 (2012).CrossRef
Hausmann, B.M., Shields, B., Quan, Q., Maletinsky, P., McCutcheon, M., Choy, J.T., Babinec, T.M., Kubanek, A., Yacoby, A., Lukin, M.D., Loncar, M., Nano Lett. 12, 1578 (2012).CrossRef
Burek, M.J., de Leon, N.P., Shields, B.J., Hausmann, B.J., Chu, Y., Quan, Q., Zibrov, A.S., Park, H., Lukin, M.D., Loncar, M., Nano Lett. 12, 6084 (2012).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantum photonic networks in diamond
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Quantum photonic networks in diamond
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Quantum photonic networks in diamond
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *