Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.284 Render date: 2022-05-22T11:05:47.717Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Soft Chemical Routes to Heterostructured High-Tc Superconducting Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Recently, inorganic/inorganic and organic/inorganic heterostructured materials have attracted considerable research interest, due to their unusual physicochemical properties, which cannot be achieved by conventional solid-state reactions. In order to develop new hybrid materials, various synthetic approaches, such as vacuum deposition, Langmuir–Blodgett films, selfassembly, and intercalation techniques, have been explored. Among them, the intercalation reaction technique—that is, the reversible insertion of guest species into the two-dimensional host lattice—is expected to be one of the most effective tools for preparing new layered heterostructures because this process can provide a soft chemical way of hybridizing inorganic/inorganic, organic/inorganic, or biological/inorganic compounds. In fact, the intercalation/deintercalation process allows us to design high-performance materials in a solution at ambient temperature and pressure, just as “soft solution processing” provides a simple and economical route for advanced inorganic materials by means of an environmentally benign, lowenergy method. These unique advantages of the intercalation technique have led to its wide application to diverse fields of the solid-state sciences, namely, secondary (rechargeable) batteries, electrochromic systems, oxidation–reduction catalysts, separating agents, sorbents, and so on. Through these extensive studies, many kinds of low-dimensional compounds have been developed as host materials for the intercalation reaction, including graphite, transition-metal chalcogenides, transitionmetal oxides, aluminosilicates, metal phosphates, metal chalcogenohalides, and so on. Recently, the area of intercalation chemistry has been extended to high-Tc superconducting copper oxides, resulting in remarkable structural anisotropy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Triscone, J.-M., Fischer, Ø., Brunner, O., Antognazza, L., Kent, A.D., and Karkut, M.G., Phys. Rev. Lett. 64 (1990) p. 804.CrossRefGoogle Scholar
2.Penner, T.L., Motschman, H.R., Armstrong, N.J., Ezenyilimba, M.C., and Williams, D.J., Nature 367 (1994) p. 49.CrossRefGoogle Scholar
3.Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., and Nuzzo, R.G., J. Am. Chem. Soc. 111 (1989) p. 321.CrossRefGoogle Scholar
4.Gamble, F.R., DiSalvo, F.J., Klemm, R.A., and Geballe, T.H., Science 168 (1970) p. 568.CrossRefGoogle Scholar
5.Xiang, X.-D., McKernan, S., Vareka, W.A., Zettl, A., Corkill, J.L., Barbee, T.W., and Cohen, M.L., Nature 348 (1990) p. 145.CrossRefGoogle Scholar
6.Choy, J.H., Kwon, S.J., and Park, G.S., Science 280 (1998) p. 1589.CrossRefGoogle Scholar
7.Choy, J.H., Park, N.G., Hwang, S.J., Kim, D.H., and Hur, N.H., J. Am. Chem. Soc. 116 (1994) p. 11564.CrossRefGoogle Scholar
8.Choy, J.H., Hwang, S.J., and Park, N.G., J. Am. Chem. Soc. 119 (1997) p. 1624.CrossRefGoogle Scholar
9.Choy, J.H., Park, N.G., Kim, Y.I., Hwang, S.H., Lee, J.S., and Yoo, H.I., J. Phys. Chem. 99 (1995) p. 7845.CrossRefGoogle Scholar
10.Choy, J.H., Kim, Y.I., Hwang, S.J., and Yang, I.S., J. Solid. State Chem. 147 (1999) p. 328.CrossRefGoogle Scholar
11.Yamanaka, S., Hotehama, K., and Kawaji, H., Nature 392 (1998) p. 580.CrossRefGoogle Scholar
12.Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J., and Portier, J., J. Am. Chem. Soc. 121 (1999) p. 1399.CrossRefGoogle Scholar
13.Yoshimura, M., J. Mater. Res. 13 (4) (1998) p. 796.CrossRefGoogle Scholar
14.Cho, W.S., Yashima, M., Kakihana, M., Kudo, A., Sakata, T., and Yoshimura, M., Appl. Phys. Lett. 66 (1995) p. 1027.CrossRefGoogle Scholar
15.Cho, W.S. and Yoshimura, M., Jpn. J. Appl. Phys., Part 2: Lett. 35 (1996) p. L1521.Google Scholar
16.Dresselhaus, M.S., ed., Intercalation in Layered Materials (Plenum Press, New York, 1986).CrossRefGoogle Scholar
17.Whittingham, M.S. and Jacobson, A.J., eds., Intercalation Chemistry (Academic Press, New York, 1982).Google ScholarPubMed
18.Muller-Warmuth, W. and Schollhorn, R., eds., Progress in Intercalation Research Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).CrossRefGoogle Scholar
19.Plakida, N.M., High-Temperature Superconductivity (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
20.Wheatley, J.M., Hsu, T.C., and Anderson, P.W., Nature 333 (1988) p. 121.CrossRefGoogle Scholar
21.Ihm, J. and Yu, D.B., Phys. Rev. B 39 (1989) p. 4760.CrossRefGoogle Scholar
22.Kumakura, H., Ye, J.H., Shimoyama, J., Kitaguchi, H., and Togano, K., Jpn. J. Appl. Phys., Part 2: Lett. 32 (1993) p. L894.Google Scholar
23.Choy, J.H., Park, N.G., Kim, Y.I., and Kim, C.H., Eur. J. Solid State Inorg. Chem. 32 (1995) p. 701.Google Scholar
24.Xiang, X.-D., Zettl, A., Vareka, W.A., Corkill, J.L., Barbee, T.W., and Cohen, M.L., Phys. Rev. B 43 (1991) p. 11496.CrossRefGoogle Scholar
25.Guo, T.N. and Chen, T.M., J. Chin. Chem. Soc. 40 (1993) p. 149.CrossRefGoogle Scholar
26.Kijima, N., Gronsky, R., Xiang, X.-D., Vareka, W.A., Zettl, A., Corkill, J.L., and Cohen, M.L., Physica C 181 (1991) p. 18.CrossRefGoogle Scholar
27.Stoto, T., Pooke, D., and Kishio, K., Phys. Rev. B 51 (1995) p. 16220.CrossRefGoogle Scholar
28.Xiang, X.-D., Vareka, W.A., Zettl, A., Corkill, J.L., Barbee, T.W., Cohen, M.L., Kijima, N., and Gronsky, R., Science 254 (1991) p. 1487.CrossRefGoogle Scholar
29.Choy, J.H., Kang, S.G., Kim, D.H., Hwang, S.J., Itoh, M., Inaguma, Y., and Nakamura, T., J. Solid State Chem. 102 (1993) p. 284.CrossRefGoogle Scholar
30.Pooke, D., Kishio, K., Koga, T., Fukuda, Y., Sanada, N., Nagoshi, M., Kitazawa, K., and Yamafuji, K., Physica C 198 (1992) p. 349.CrossRefGoogle Scholar
31.Hwang, S.J., Park, N.G., Kim, D.H., and Choy, J.H., J. Solid State Chem. 138 (1998) p. 66.CrossRefGoogle Scholar
32.Choy, J.H., Hwang, S.J., Kim, D.H., and Park, H.H., Synth. Met. 71 (1995) p. 1589.CrossRefGoogle Scholar
33.Liang, G., Sahiner, A., Croft, M., Xu, W., Xiang, X.-D., Badresingh, D., Li, W., Chen, J., Peng, J., Zettl, A., and Lu, F., Phys. Rev. B 47 (1993) p. 1029.CrossRefGoogle Scholar
34.Faulques, E. and Russo, R.E., Solid State Commun. 82 (1992) p. 531.CrossRefGoogle Scholar
35.Huong, P.V. and Verma, A.L., Phys. Rev. B 48 (1993) p. 9869.CrossRefGoogle Scholar
36.Maeda, A., Hase, M., Tsukada, I., Noda, K., Takebayashi, S., and Uchinokura, K., Phys. Rev. B 41 (1990) p. 6418.CrossRefGoogle Scholar
37.Choy, J.H., Park, N.G., Hwang, S.J., and Kim, Y.I., Synth. Met. 71 (1995) p. 1551.CrossRefGoogle Scholar
38.Choy, J.H., Hwang, S.J., Kim, Y.I., and Kwon, S.J., Solid State Ionics 108 (1998) p. 17.CrossRefGoogle Scholar
39.Choy, J.H., Kwon, S.J., Hwang, S.J., and Kim, Y.I., J. Mater. Chem. 9 (1999) p. 129.CrossRefGoogle Scholar
40.Choy, J.H., Kim, Y.I., and Hwang, S.J., J. Phys. Chem. B 102 (1998) p. 9191.CrossRefGoogle Scholar
41.Bae, M.K., Kim, M.S., Lee, S.I., Park, N.G., Hwang, S.J., Kim, D.H., and Choy, J.H., Phys. Rev. B 53 (1996) p. 12416.CrossRefGoogle Scholar
42.Choy, J.H., Park, N.G., Hwang, S.J., and Khim, Z.G., J. Phys. Chem. 100 (1996) p. 3783.CrossRefGoogle Scholar
43.Hwang, S.J., Kim, S.J., and Choy, J.H., Phys. Rev. B 57 (1998) p. 3156.CrossRefGoogle Scholar
44.Choy, J.H., Kim, D.K., Hwang, S.J., Hwang, S.H., and Hur, N.H., Physica C 235 (1994) p. 1023.Google Scholar
45.Choy, J.H., Hwang, S.J., and Kim, D.K., Phys. Rev. B 55 (1997) p. 5674.CrossRefGoogle Scholar
46.Choy, J.H., Kim, Y.I., Hwang, S.J., and Huong, P.V., J. Phys. Chem. B 104 (2000) p. 7273.CrossRefGoogle Scholar
47.Arnek, R. and Poceva, D., Acta Chem. Scand., Ser. A 30 (1976) p. 59.CrossRefGoogle Scholar
48.Sandstrom, M., Persson, I., and Persson, P., Acta Chem. Scand. 44 (1990) p. 653.CrossRefGoogle Scholar
49.Li, Q., Xi, X.X., Wu, X.D., Inam, A., Vadlamannati, S., McLean, W.L., Venkatesan, T., Ramesh, R., Hwang, D.M., Martinez, J.A., and Nazar, L., Phys. Rev. Lett. 64 (1990) p. 3086.CrossRefGoogle Scholar
50.Tasai, H.L., Schindler, J.L., and Kanatzidis, M.G., Chem. Mater. 9 (1997) p. 875.CrossRefGoogle Scholar
51.Kleinfeld, E.R. and Ferguson, G.S., Science 265 (1994) p. 370.CrossRefGoogle Scholar
52.Hardy, W.J. and Tait, J.M., Science 225 (1984) p. 923.Google Scholar
53.Alberti, G., Casciola, M., and Costantino, U.J., Colloid Interface Sci. 107 (1965) p. 256.CrossRefGoogle Scholar
54.Liu, C., Singh, O., Joensen, P., Cruzon, A.E., and Frindt, R.F., Thin Solid Films 113 (1984) p. 165.CrossRefGoogle Scholar
55.Treacy, M.M., Rice, S.B., Jacobson, A.J., and Lewandowski, J.T., Chem. Mater. 2 (1990) p. 279.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Soft Chemical Routes to Heterostructured High-Tc Superconducting Materials
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Soft Chemical Routes to Heterostructured High-Tc Superconducting Materials
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Soft Chemical Routes to Heterostructured High-Tc Superconducting Materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *