Skip to main content Accessibility help

Artificial nonreciprocal photonic materials at GHz-to-THz frequencies

  • Andrea Alù (a1) and Harish Krishnaswamy (a2)


Lorentz reciprocity governs the symmetry with which electromagnetic signals travel in space and time. A reciprocal channel supports signal transport in two directions with the same transmission properties. Nonreciprocal devices do not obey this general symmetry, and therefore enable isolation and circulation, offering fundamental functionalities in modern GHz-to-THz photonic systems. While most nonreciprocal devices to date are based on magneto-optical phenomena, significant interest has been raised by approaches that avoid the use of magnetic materials, instead relying on artificial materials and circuits that mimic magnetically biased ferrites, enabling compact, light, integrated, and significantly cheaper nonreciprocal devices. Here, we review recent progress in and opportunities offered by artificial nonmagnetic materials that break reciprocity, revealing their potential for compact nonreciprocal devices and systems.



Hide All
1.Casimir, H.B.G., Rev. Mod. Phys. 17, 343 (1945).
2.Bharadia, D., McMilin, E., Katti, S., Comput. Commun. Rev. 43, 375 (2013).
3.Zhou, J., Reiskarimian, N., Diakonikolas, J., Dinc, T., Chen, T., Zussman, G., Krishnaswamy, H., IEEE Commun. Mag. 55 (4), 142 (2017).
4.Freiser, M., IEEE Trans. Magn. 4, 152 (1968).
5.Chen, W., Leykam, D., Chong, Y.D., Yang, L., MRS Bull. 43 (6), 443 (2018).
6.Aleahmad, P., Khajavikhan, M., Christodoulides, D., LiKamWa, P., Sci. Rep. 7, 2129 (2017).
7.Shi, Y., Yu, Z., Fan, S., Nat. Photonics 9, 388 (2015).
8.Tanaka, S., Shimimura, N., Ohtake, K., Proc. IEEE 53, 260 (1965).
9.Kodera, T., Sounas, D.L., Caloz, C., Appl. Phys. Lett. 99, 031114 (2011).
10.Kodera, T., Sounas, D.L., Caloz, C., IEEE Trans. Microw. Theory Tech. 61, 1030 (2013).
11.Wang, Z., Wang, Z., Wang, J., Zhang, B., Huangfu, J., Joannopoulos, J.D., Soljačić, M., Ran, L., Proc. Natl. Acad. Sci. U.S.A. 109, 13194 (2012).
12.Sounas, D.L., Alù, A., Nat. Photonics 11, 774 (2017).
13.Kamal, A.K.A., Proc. IRE 48, 1424 (1960).
14.Anderson, B.D.O., Newcomb, R.W., Proc. IEEE 53, 1674 (1965).
15.Wentz, J.L., Proc. IEEE 54, 96 (1966).
16.Brenner, H.E.A., IEEE Trans. Microw. Theory Tech. 15, 301 (1967).
17.Carchon, G., Nanwelaers, B., IEEE Trans. Microw. Theory Tech. 48, 316 (2000).
18.Tzuang, L.D., Fang, K., Nussenzveig, P., Fan, S., Lipson, M., Nat. Photonics 8, 701 (2014).
19.Doerr, C.R., Chen, L., Vermeulen, D., Opt. Express 22, 4493 (2014).
20.Kamal, A., Clarke, J., Devoret, M.H., Nat. Phys. 7, 311 (2011).
21.Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A., Science 343, 516 (2014).
22.Yu, Z., Fan, S., Nat. Photonics 3, 91 (2009).
23.Qin, S., Xu, Q., Wang, Y.E., IEEE Trans. Microw. Theory Tech. 62, 2260 (2014).
24.Sounas, D.L., Caloz, C., Alù, A., Nat. Commun. 4, 2407 (2013).
25.Sounas, D.L., Alù, A., ACS Photonics 1, 198 (2014).
26.Estep, N.A., Sounas, D.L., Soric, J., Alù, A., Nat. Phys. 10, 923 (2014).
27.Estep, N.A., Sounas, D.L., Alù, A., IEEE Trans. Microw. Theory Tech. 64, 502 (2016).
28.Kerckhoff, J., Lalumière, K., Chapman, B.J., Blais, A., Lehnert, K.W., Phys. Rev. Appl. 4, 034002 (2015).
29.Hadad, Y., Sounas, D.L., Alù, A., Phys. Rev. B Condens. Matter 92, 100304 (2015).
30.Shaltout, A., Kildishev, A., Shalaev, V., Opt. Mater. Express 5, 2459 (2015).
31.Hadad, Y., Soric, J.C., Alù, A., Proc. Natl. Acad. Sci. U.S.A. 113, 3471 (2016).
32.Taravati, S., Caloz, C., IEEE Trans. Antennas Propag. 65, 442 (2017).
33.Zhu, L., Fan, S., Phys. Rev. B Condens. Matter 90, 220301 (2014).
34.Green, M., Nano Lett. 12, 5985 (2012).
35.Correas-Serrano, D., Gomez-Diaz, J.S., Sounas, D.L., Hadad, Y., Alvarez-Melcon, A., Alù, A., IEEE Antennas Wirel. Propag. Lett. 15, 1529 (2015).
36.Phare, C.T., Lee, Y.H.D., Cardenas, J., Lipson, M., Nat. Photonics 9, 511 (2015).
37.Reiskarimian, N., Krishnaswamy, H., Nat. Commun. 7, 11217 (2016).
38.Reiskarimian, N., Zhou, J., Krishnaswamy, H., IEEE J. Solid-State Circuits 52 (5), 1358 (2017).
39.Dinc, T., Tymchenko, M., Nagulu, A., Sounas, D., Alù, A., Krishnaswamy, H., Nat. Commun. 8, 795 (2017).
40.Dinc, T., Nagulu, A., Krishnaswamy, H., IEEE J. Solid-State Circuits 52 (12), 3276 (2017).
41.Busignies, H., Dishal, M., Proc. IRE 37, 478 (1949).
42.LePage, W.R., Cahn, C.R., Brown, J.S., Trans. Am. Inst. Electr. Eng. Pt. I 72, 63 (1953).
43.Ghaffari, A., Klumperink, E., Soer, M., Nauta, B., IEEE J. Solid-State Circuits 46, 998 (2011).
44.Reiskarimian, N., Zhou, J., Chuang, T.-H., Krishnaswamy, H., IEEE Trans. Circuits Syst. II Express Briefs 63 (8), 728 (2016).
45.Nagulu, A., Alù, A., Krishnaswamy, H., IEEE RFIC Symposium (2018).
46.Sounas, D.L., Alù, A., Phys. Rev. Lett. 118, 154302 (2017).
47.Kord, A.. Sounas, D.L., Alù, A., Electr. Eng. Syst. Sci. Signal Process. (2017),
48.Lu, L., Joannopoulos, J.D., Soljačić, M., Nat. Photonics 8, 821 (2014).
49.Raghu, S., Haldane, F.D.M., Phys. Rev. A At. Mol. Opt. Phys. 78, 033834 (2008).
50.Fleury, R., Khanikaev, A., Alù, A., Nat. Commun., 7, 11744 (2016).
51.Schmidt, M., Kessler, S., Peano, V., Painter, O., Marquardt, F., Optica 2, 635 (2015).
52.Peano, V., Brendel, C., Schmidt, M., Marquardt, F., Phys. Rev. X 5, 031011 (2015).
53.Reiskarimian, N., Dastjerdi, M.B., Zhou, J., Krishnaswamy, H., in 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 316317.


Related content

Powered by UNSILO

Artificial nonreciprocal photonic materials at GHz-to-THz frequencies

  • Andrea Alù (a1) and Harish Krishnaswamy (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.