Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 42
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fang, Congcong Meng, Xianghui Xie, Youbai and Zhao, Bo 2016. Quasicontinuum investigation of the feedback effects on friction behavior of an abrasive particle over a single crystal aluminum substrate. Tribology International, Vol. 98, p. 48.


    Hijazi, Iyad A. and Park, Young Ho 2016. Mixed intermetallic potentials for Fe-Cu compounds. Molecular Simulation, Vol. 42, Issue. 8, p. 611.


    Li, Guodong An, Qi Goddard, William A. Hanus, Riley Zhai, Pengcheng Zhang, Qingjie and Snyder, G. Jeffrey 2016. Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3. Acta Materialia, Vol. 103, p. 775.


    Li, Yangzhong Chernatynskiy, Aleksandr Kennedy, J. Rory Sinnott, Susan B. and Phillpot, Simon R. 2016. Lattice expansion by intrinsic defects in uranium by molecular dynamics simulation. Journal of Nuclear Materials, Vol. 475, p. 6.


    Liang, Tao Ashton, Michael Choudhary, Kamal Zhang, Difan Fonseca, Alexandre F. Revard, Benjamin C. Hennig, Richard G. Phillpot, Simon R. and Sinnott, Susan B. 2016. Properties of Ti/TiC Interfaces from Molecular Dynamics Simulations. The Journal of Physical Chemistry C, Vol. 120, Issue. 23, p. 12530.


    Oda, Takuji Weber, William J. and Tanigawa, Hisashi 2016. Two-body potential model based on cosine series expansion for ionic materials. Computational Materials Science, Vol. 111, p. 54.


    Senftle, Thomas P Hong, Sungwook Islam, Md Mahbubul Kylasa, Sudhir B Zheng, Yuanxia Shin, Yun Kyung Junkermeier, Chad Engel-Herbert, Roman Janik, Michael J Aktulga, Hasan Metin Verstraelen, Toon Grama, Ananth and van Duin, Adri C T 2016. The ReaxFF reactive force-field: development, applications and future directions. npj Computational Materials, Vol. 2, p. 15011.


    Slingsby, J. G. Rorrer, N. A. Krishna, L. Toberer, E. S. Koh, C. A. and Maupin, C. M. 2016. Dynamic free energy surfaces for sodium diffusion in type II silicon clathrates. Phys. Chem. Chem. Phys., Vol. 18, Issue. 7, p. 5121.


    Yan, Xin and Sharma, Pradeep 2016. Time-Scaling in Atomistics and the Rate-Dependent Mechanical Behavior of Nanostructures. Nano Letters, Vol. 16, Issue. 6, p. 3487.


    Bores, Cecilia Lomba, Enrique Perera, Aurélien and Almarza, Noé G. 2015. Pattern formation in binary fluid mixtures induced by short-range competing interactions. The Journal of Chemical Physics, Vol. 143, Issue. 8, p. 084501.


    Brault, Pascal and Neyts, Erik C. 2015. Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering. Catalysis Today, Vol. 256, p. 3.


    Choudhary, Kamal Liang, Tao Chernatynskiy, Aleksandr Lu, Zizhe Goyal, Anuj Phillpot, Simon R and Sinnott, Susan B 2015. Charge optimized many-body potential for aluminum. Journal of Physics: Condensed Matter, Vol. 27, Issue. 1, p. 015003.


    Goel, Saurav Luo, Xichun Agrawal, Anupam and Reuben, Robert L. 2015. Diamond machining of silicon: A review of advances in molecular dynamics simulation. International Journal of Machine Tools and Manufacture, Vol. 88, p. 131.


    Hahn, Eric N. and Meyers, Marc A. 2015. Grain-size dependent mechanical behavior of nanocrystalline metals. Materials Science and Engineering: A, Vol. 646, p. 101.


    Michael Brown, W. Carrillo, Jan-Michael Y. Gavhane, Nitin Thakkar, Foram M. and Plimpton, Steven J. 2015. Optimizing legacy molecular dynamics software with directive-based offload. Computer Physics Communications, Vol. 195, p. 95.


    Nguyen, Trung Dac and Plimpton, Steven J. 2015. Accelerating dissipative particle dynamics simulations for soft matter systems. Computational Materials Science, Vol. 100, p. 173.


    Nouranian, Sasan Gwaltney, Steven R. Baskes, Michael I. Tschopp, Mark A. and Horstemeyer, Mark F. 2015. Simulations of tensile bond rupture in single alkane molecules using reactive interatomic potentials. Chemical Physics Letters, Vol. 635, p. 278.


    Orekhov, N.D. and Stegailov, V.V. 2015. Graphite melting: Atomistic kinetics bridges theory and experiment. Carbon, Vol. 87, p. 358.


    Pandey, Sumeet C. Meade, Roy and Sandhu, Gurtej S. 2015. Cu impurity in insulators and in metal-insulator-metal structures: Implications for resistance-switching random access memories. Journal of Applied Physics, Vol. 117, Issue. 5, p. 054504.


    Stegailov, V. V. and Zhilyaev, P. A. 2015. Warm dense gold: effective ion–ion interaction and ionisation. Molecular Physics, p. 1.


    ×

Computational aspects of many-body potentials

  • Steven J. Plimpton (a1) and Aidan P. Thompson (a2)
  • DOI: http://dx.doi.org/10.1557/mrs.2012.96
  • Published online: 09 May 2012
Abstract
Abstract

We discuss the relative complexity and computational cost of several popular many-body empirical potentials, developed by the materials science community over the past 30 years. The inclusion of more detailed many-body effects has come at a computational cost, but the cost still scales linearly with the number of atoms modeled. This is enabling very large molecular dynamics simulations with unprecedented atomic-scale fidelity to physical and chemical phenomena. The cost and scalability of the potentials, run in serial and parallel, are benchmarked in the LAMMPS molecular dynamics code. Several recent large calculations performed with these potentials are highlighted to illustrate what is now possible on current supercomputers. We conclude with a brief mention of high-performance computing architecture trends and the research issues they raise for continued potential development and use.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

4.J.E. Jones , Proc. R. Soc. London, Ser. A 106, 463 (1924).

5.A.D. MacKerell Jr., D. Bashford , M. Bellott , R.L. Dunbrack Jr., J.D. Evanseck , M.J. Field , S. Fischer , J. Gao , H. Guo , S. Ha , D. Joseph-McCarthy , L. Kuchnir , K. Kuczera , F.T.K. Lau , C. Mattos , S. Michnick , T. Ngo , D.T. Nguyen , B. Prodhom , W.E. Reiher III, B. Roux , M. Schlenkrich , J.C. Smith , R. Stote , J. Straub , M. Watanabe , J. Wirkiewicz-Kuczera , D. Yin , M. Karplus , J. Phys. Chem. B 102, 3586 (1998).

6.T.E. Cheatham III, M.A. Young , Biopolymers 56, 232 (2001).

7.M.S. Daw , M.I. Baskes , Phys. Rev. Lett. 50, 1285 (1983).

8.M.S. Daw , M.I. Baskes , Phys. Rev. B 29, 6443 (1984).

9.M.I. Baskes , Phys. Rev. Lett. 59, 2666 (1987).

10.J. Tersoff , Phys. Rev. B 37, 6991 (1988).

11.D.W. Brenner , Phys. Rev. B 42, 9458 (1990).

12.S.J. Stuart , A.B. Tutein , J.A. Harrison . J. Chem. Phys. 112, 6472 (2000).

13.D.G. Pettifor , I.I. Oleinik , Phys. Rev. B 59, 8487 (1999).

14.A.C.T. van Duin , S. Dasgupta , F. Lorant , W.A. Goddard III, J. Phys. Chem. A 105, 9396 (2001).

15.J. Yu , S.B. Sinnott , S.R. Phillpot , Phys. Rev. B 75, 085311 (2007).

16.S.W. Rick , S.J. Stuart , B.J. Berne , J. Chem. Phys. 101, 16141 (1994).

17.D. Wolf , P. Keblinski , S.R. Phillpot , J. Eggebrecht , J. Chem. Phys. 110, 8254 (1999).

18.P. Ewald , Ann. Phys. 369, 253287 (1921).

20.S. Plimpton , J. Comp. Phys. 117, 1 (1995).

21.D.W. Brenner , O.A. Shenderova , J.A. Harrison , S.J. Stuart , B. Ni , S.B. Sinnott , J. Phys. Condens. Matter 14, 783 (2002).

22.T.-R. Shan , B.D. Devine , T.W. Kemper , S.B. Sinnott , S.R. Phillpot , Phys. Rev. B 81, 125328 (2010).

23.A.P. Thompson , S.J. Plimpton , W. Mattson , J. Chem. Phys. 131, 154107 (2009).

24.R.W. Hockney , J.W. Eastwood , Computer Simulation Using Particles (IOP, Bristol, 1988).

25.E.L. Pollock , J. Glosli , Comput. Phys. Commun. 95, 93 (1996).

26.T. Darden , D. York , L. Pedersen , J. Chem. Phys. 98, 10089 (1993).

27.A.P. Bártok , M.C. Payne , R. Kondor , G. Csányi , Phys. Rev. Lett. 104, 136403 (2010).

28.T.R. Mattsson , M.P. Desjarlais , Phys. Rev. Lett. 97 (1) (2006).

29.S. Root , R.J. Magyar , J.H. Carpenter , D.L. Hanson , T.R. Mattsson , Phys. Rev. Lett. 105 (8) (2010).

30.G. Kresse , J. Hafner , Phys. Rev. B 49 (20), 14251 (1994).

31.A. Kubota , W.G. Wolfer , S.M. Valone , M.I. Baskes , J. Comput.-Aided Mater. Des. 14, 367 (2007).

32.C.F. Cornwell , C.R. Welch , J. Chem. Phys. 134, 204708 (2011).

33.H.P. Chen , R.K. Kalia , E. Kaxiras , G. Lu , A. Nakano , K. Nomura , A.C.T. van Duin , P. Vashishta , Z. Yuan , Phys. Rev. Lett. 104, 155502 (2010).

34.H. Tsuzuki , P.S. Branicio , J.P. Rino . Comput. Phys. Commun. 177, 518 (2007).

37.J.A. Anderson , C.D. Lorenz , A. Travesset , J. Comput. Phys. 227, 5342 (2008).

38.W.M. Brown , A. Kohlmeyer , S.J. Plimpton , A.N. Tharringon , Comput. Phys. Commun. 183, 449 (2012).

39.W.M. Brown , P. Wang , S.J. Plimpton , A.N. Tharrington , Comput. Phys. Commun. 182 (4), 898 (2011).

40.J.E. Stone , J.C. Phillips , P.L. Freddolino , D.J. Hardy , L.G. Trabuco , K. Schulten , J. Comput. Chem. 28 (16), 2618 (2007).

41.D.E. Shaw , P. Maragakis , K. Lindorff-Larsen , S. Piana , R.O. Dror , M.P. Eastwood , J.A. Bank , J.M. Jumper , J.K. Salmon , Y.B. Shan , W. Wriggers , Science 330, 341 (2010).

42.H.J.C. Berendsen , J.R. Grigera , T.P. Straatsma , J. Phys. Chem. 91, 6269 (1987).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: