Skip to main content
    • Aa
    • Aa

Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces


The following article is based on the Outstanding Young Investigator Award presentation given by Harold Y. Hwang of the University of Tokyo on March 29, 2005, at the Materials Research Society Spring Meeting in San Francisco. Hwang was cited for “innovative work on the physics of transition-metal oxides and the atomic-scale synthesis of complex oxide heterostructures.” Perovskite oxides range from insulators to superconductors and can incorporate magnetism as well as couple to phonon instabilities. The close lattice match between many perovskites raises the possibility of growing epitaxial thin-film heterostructures with different ground states that may compete or interact. The recent development of superconducting Josephson junctions, magnetic tunnel junctions, ferroelectric memory cells, and resistive switching can be considered examples within this new heteroepitaxial family. In this context, Hwang presents his studies of electronic structure at atomically abrupt interfaces grown by pulsed laser deposition. Some issues are generic to all heterointerfaces, such as the stability of dopant profiles and diffusion, interface states and depletion, and interface charge arising from polarity discontinuities. A more unusual issue is the charge structure associated with Mott insulator/band insulator interfaces. The question is, how should one consider the correlated equivalent of band bending? This semiconductor concept is based on the validity of rigid single-particle band diagrams, which are known to be an inadequate description for strongly correlated electrons. In addition to presenting an interesting scientific challenge, this question underlies the attempts to develop new applications of doped Mott insulators in device geometries.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1For example, see N. Tsuda K. Nasu A. Fujimori and K. Siratori Electronic Conduction in Oxides (Springer-Verlag, Berlin, 2000).

2 E. Dagotto Science 309 (2005) p. 257.

3 J.G. Bednorz and K.A. Mueller Z. Phys. B 64 (1986) p. 189.

5 O. Auciello J.F. Scott and R. Ramesh Phys. Today 51 (7) (1998) p. 22.

10 K.v. Klitzing G. Dorda and M. Pepper Phys. Rev. Lett. 45 (1980) p. 494.

11 C.H. Ahn J.-M. Triscone and J. Mannhart Nature 424 (2004) p. 1015.

13 W. Braun Applied RHEED (Springer, Berlin, 1999).

14 G.J.H.M. Rijnders , G. Koster D.H.A. Blank and H. Rogalla Appl. Phys. Lett. 70 (1997) p. 1888.

15As an example for Tl-based cuprates, see Y. Shimakawa Y. Kubo T. Manako and H. Igarashi Phys. Rev. B 40 (1989) p. 11400.

16 W. Gong H. Yun Y.B. Ning J.E. Greedan W.R. Datars and C.V. Stager J. Solid State Chem. 90 (1991) p. 320.

17 H.Y. Hwang A. Ohtomo N. Nakagawa D.A. Muller and J.L. Grazul Physica E 22 (2004) p. 712.

18 H.P.R. Frederikse W.R. Thurber and W.R. Hosler Phys. Rev. 134 (1964) p. A442.

19 J.F. Schooley W.R. Hosler and M.L. Cohen Phys. Rev. Lett. 12 (1964) p. 474.

20 D.A. Muller N. Nakagawa A. Ohtomo J.L. Grazul and H.Y. Hwang Nature 430 (2004) p. 657.

21 Y. Tokura Y. Taguchi Y. Okada Y. Fujishima T. Arima K. Kumagai and Y. Iye Phys. Rev. Lett. 70 (1993) p. 2126.

22 A. Ohtomo D.A. Muller J.L. Grazul and H.Y. Hwang Nature 419 (2002) p. 378.

23 A. Ohtomo D.A. Muller J.L. Grazul and H.Y. Hwang Appl. Phys. Lett. 80 (2002) p. 3922.

25For an example of delta-doping in silicon, see P.H. Citrin D.A. Muller H.-J. Gossmann , R. Vanfleet and P.A. Northrup Phys. Rev. Lett. 83 (1999) p. 3234.

26 S. Okamoto and A.J. Millis Nature 428 (2004) p. 630.

28 M. Sugiura K. Uragou M. Noda M. Tachiki and T. Kobayashi Jpn. J. Appl. Phys. 38 (1999) p. 2675.

29 H. Tanaka J. Zhang and T. Kawai Phys. Rev. Lett. 88 027204 (2002).

30 N. Nakagawa M. Asai Y. Mukunoki T. Susaki , and H.Y. Hwang Appl. Phys. Lett. 86 082504 (2005).

31 G.A. Baraff J.A. Appelbaum and D.R. Hamann Phys. Rev. Lett. 38 (1977) p. 237.

32 W.A. Harrison E.A. Kraut J.R. Waldrop and R.W. Grant Phys. Rev. B 18 (1978) p. 4402.

33 A. Ohtomo and H.Y. Hwang Nature 427 (2004) p. 423.

34 D.O. Klenov D.G. Schlom H. Li and S. Stemmer Jpn. J. Appl. Phys. 44 (2005) p. L617.

35 D.-W. Kim D.-H. Kim , B.-S. Kang T.W. Noh D.R. Lee and K.-B. Lee , Appl. Phys. Lett. 74 (1999) p. 2176.

36 Y. Mukunoki N. Nakagawa T. Susaki and H.Y. Hwang Appl. Phys. Lett. 86 171908 (2005).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2017. This data will be updated every 24 hours.