Skip to main content
×
Home
    • Aa
    • Aa

Opportunities and challenges for first-principles materials design and applications to Li battery materials

Abstract

The idea of first-principles methods is to determine the properties of materials by solving the basic equations of quantum mechanics and statistical mechanics. With such an approach, one can, in principle, predict the behavior of novel materials without the need to synthesize them and create a virtual design laboratory. By showing several examples of new electrode materials that have been computationally designed, synthesized, and tested, the impact of first-principles methods in the field of Li battery electrode materials will be demonstrated. A significant advantage of computational property prediction is its scalability, which is currently being implemented into the Materials Genome Project at the Massachusetts Institute of Technology. Using a high-throughput computational environment, coupled to a database of all known inorganic materials, basic information on all known inorganic materials and a large number of novel “designed” materials is being computed. Scalability of high-throughput computing can easily be extended to reach across the complete universe of inorganic compounds, although challenges need to be overcome to further enable the impact of first-principles methods.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. M. Whittingham , Science 192, 1126 (1976).

4. G. Ceder , M.K. Aydinol , Solid State Ionics 109, 151 (1998).

5. F. Zhou , M. Cococcioni , C. Marianetti , D. Morgan , G. Ceder , Phys. Rev. B 70, 235121 (2004).

6. L. Wang , T. Maxisch , G. Ceder , Phys. Rev. B 73, 195107 (2006).

7. L. Wang , T. Maxisch , G. Ceder , Chem. Mater. 19, 543 (2007).

8. V.I. Anisimov , F. Aryasetiawan , A.I. Lichtenstein , J. Phys. Condens. Matter 9, 767 (1997).

9. A. Van der Ven , G. Ceder , Electrochem. Solid-State Lett. 3, 301 (2000).

11. D. Morgan , A. Van der Ven , G. Ceder , Electrochem. Solid-State Lett. 7, A30 (2004).

12. B. Kang , G. Ceder , Nature 458, 190 (2009).

13. S. Ping Ong , L. Wang , B. Kang , G. Ceder , Chem. Mater. 20, 1798 (2008).

14. A. Kayyar , H. Qian , J. Luo , Appl. Phys. Lett. 95, 221905 (2009).

15. S.P. Ong , A. Jain , G. Hautier , B. Kang , G. Ceder , Electrochem. Commun. 12, 427 (2010).

16. S. Kim , J. Kim , H. Gwon , K. Kang , J. Electrochem. Soc. 156, A635 (2009).

17. G. Chen , T.J. Richardson , J. Power Sources 195, 1221 (2010).

18. K. Kang , Y. Meng , J. Breger , C. Grey , G. Ceder , Science 311, 977 (2006).

19. J. Reed , G. Ceder , Chem. Rev. 104, 4513 (2004).

20. J. Reed , G. Ceder , Electrochem. Solid-State Lett. 5, A145 (2002).

22. A.K. Padhi , K.S. Nanjundaswamy , C. Masquelier , J.B. Goodenough , J. Electrochem. Soc. 144, 2581 (1997).

23. N.A. Godshall , I.D. Raistrick , R.A. Huggins , J. Electrochem. Soc. 131, 543 (1984).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 179 *
Loading metrics...

Abstract views

Total abstract views: 392 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th March 2017. This data will be updated every 24 hours.