Skip to main content
    • Aa
    • Aa

Stretchable and ultraflexible organic electronics

  • Darren J. Lipomi (a1) and Zhenan Bao (a2)

Stretchable and ultraflexible electronic devices have a broad range of potential uses, from robust devices for energy storage and conversion to biomedical devices that make conformal interfaces with the skin and internal organs. Organics have long been associated with mechanical compliance, which enables inexpensive manufacturing via roll-to-roll printing. This article provides an overview of the use of organic electronic materials, including π-conjugated polymers and small molecules, in highly deformable devices. It begins with a comparison of devices based on organic devices to those based on inorganic composites. The thin-film nature of organic semiconductor devices has also led to the development of several techniques for metrology that can be applied specifically to brittle organic thin films. The article concludes with a brief discussion of the applications of stretchable and ultraflexible organic electronic devices and a prescriptive outlook for successful collaborative work in this exciting, interdisciplinary field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stretchable and ultraflexible organic electronics
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Stretchable and ultraflexible organic electronics
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Stretchable and ultraflexible organic electronics
      Available formats
Hide All
1. WagnerS., BauerS., MRS Bull. 37, 207 (2012).
2. SuoZ., MRS Bull. 37, 218 (2012).
3. SekitaniT., SomeyaT., MRS Bull. 37, 236 (2012).
4. KimD.-H., LuN., HuangY., RogersJ.A., MRS Bull. 37, 226 (2012).
5. SavagatrupS., PrintzA.D., O’ConnorT.F., ZaretskiA.V., LipomiD.J., Chem. Mater. 26, 3028 (2014).
6. HeegerA.J., Angew. Chem. Int. Ed. 40, 2591 (2001).
7. FanJ.A., YeoW., SuY., HattoriY., LeeW., JungS., ZhangY., LiuZ., HengH., FalgoutL., BajemaM., ColemanT., GregoireD., LarsenR.J., HuangY., RogersJ.A., Nat. Commun. 5, 3266 (2014).
8. LeeY., ShinM., ThiyagarajanK., JeongU., Macromolecules 49, 433 (2016).
9. SuoZ., MaE.Y., GleskovaH., WagnerS., Appl. Phys. Lett. 74, 1177 (1999).
10. JonesJ., LacourS.P., WagnerS., SuoZ.G., J. Vac. Sci. Technol. A 22, 1723 (2004).
11. LipomiD.J., TeeB.C.-K., VosgueritchianM., BaoZ.N., Adv. Mater. 23, 1771 (2011).
12. WuH.S., KustraS., GatesE.M., BettingerC.J., Org. Electron. 14, 1636 (2013).
13. KaltenbrunnerM., SekitaniT., ReederJ., YokotaT., KuribaraK., TokuharaT., DrackM., SchwödiauerR., GrazI., Bauer-GogoneaS., BauerS., SomeyaT., Nature 499, 458 (2013).
14. KaltenbrunnerM., WhiteM.S., GłowackiE.D., SekitaniT., SomeyaT., SariciftciN.S., BauerS., Nat. Commun. 3, 770 (2012).
15. WhiteM.S., KaltenbrunnerM., GłowackiE., GutnichenkoK., KettlegruberG., GrazI., AazouS., UlbrichtC., EgbeD.A.M., MironM.C., MajorZ., ScharberM., SekitaniT., SomeyaT., BauerS., SariciftciN.S., Nat. Photonics 7, 811 (2013).
16. BauerS., Bauer-GogoneaS., GrazI., KaltenbrunnerM., KeplingerC., SchwödiauerR., Adv. Mater. 26, 149 (2014).
17. ShinM., SongJ.H., LimG.H., LimB., ParkJ.J., JeongU., Adv. Mater. 26, 3706 (2014).
18. XuJ., WangS., WangG.-J.N., ZhuC., LuoS., JinL., GuX., ChenS., FeigV.R., ToJ.W.F., Rondeau-GagnéS., ParkJ., SchroederB.C., LuC., OhJ.Y, WangY., KimY.-H., YanH., SinclairR., ZhouD., XueG., MurmannB., LinderC., CaiW., TokJ.B.-H., ChungJ.W., BaoZ., Science 355, 59 (2017).
19. ChortosA., LimJ., ToJ.W.F., VosgueritchianM., DusseaultT.J., KimT.H., HwangS.W., BaoZ.N., Adv. Mater. 26, 4253 (2014).
20. YuZ., NiuX., LiuZ., PeiQ., Adv. Mater. 23, 3989 (2011).
21. RootS.E., SavagatrupS., PaisC.J., AryaG., LipomiD.J., Macromolecules 49, 2886 (2016).
22. WuH.C., BenightS.J., ChortosA., LeeW.Y., MeiJ.G., ToJ.W.F., LuC., HeM.Q., TokJ.B.-H., ChenW.C., BaoZ.N., Chem. Mater. 26, 4544 (2014).
23. SavagatrupS., PrintzA.D., O’ConnorT.F., ZaretskiA.V., RodriquezD., SawyerE.J., RajanK.M., AcostaR.I., RootS.E., LipomiD.J., Energy Environ. Sci. 8, 55 (2015).
24. KimJ.S., KimJ.H., LeeW., YuH., KimH.J., SongI., ShinM., OhJ.H., JeongU., KimT.S., KimB.J., Macromolecules 48, 4339 (2015).
25. BrunerC., DauskardtR.H., Macromolecules 47, 1117 (2014).
26. PrintzA.D., ZaretskiA.V., SavagatrupS., ChiangA.S.-C., LipomiD.J., ACS Appl. Mater. Interfaces 7, 23257 (2015).
27. StaffordC.M., HarrisonC., BeersK.L., KarimA., AmisE.J., VanlandinghamM.R., KimH.C., VolksenW., MillerR.D., SimonyiE.E., Nat. Mater. 3, 545 (2004).
28. RodriquezD., SavagatrupS., ValleE., ProctorC.M., McDowellC., BazanG.C., NguyenT.Q., LipomiD.J., ACS Appl. Mater. Interfaces 8, 11649 (2016).
29. SawyerE.J., ZaretskiA.V., PrintzA.D., de los SantosN.V., Bautista-GutierrezA., LipomiD.J., Extreme Mech. Lett. 8, 78 (2016).
30. SavagatrupS., PrintzA.D., WuH.S., RajanK.M., SawyerE.J., ZaretskiA.V., BettingerC.J., LipomiD.J., Synth. Met. 203, 208 (2015).
31. RothB., SavagatrupS., de los SantosN.V., HagemannO., CarleJ.E., HelgesenM., LiviF., BundgaardE., SondergaardR., KrebsF.C., LipomiD.J., Chem. Mater. 28, 2363 (2016).
32. SavagatrupS., ZhaoX.K., ChanE., MeiJ.G., LipomiD.J., Macromol. Rapid Commun. 37, 1623 (2016).
33. SavagatrupS., MakaramA.S., BurkeD.J., LipomiD.J., Adv. Funct. Mater. 24, 1169 (2014).
34. TummalaN.R., BrunerC., RiskoC., BredasJ.L., DauskardtR.H., ACS Appl. Mater. Interfaces 7, 9957 (2015).
35. KimT., KimJ.H., KangT.E., LeeC., KangH., ShinM., WangC., MaB., JeongU., KimT.S., KimB.J., Nat. Commun. 6, 8547 (2015).
36. O’ConnorT.F., ZaretskiA.V., SavagatrupS., PrintzA.D., WilkesC.D., DiazM.I., LipomiD.J., Sol. Energy Mater. Sol. Cells 144, 438 (2016).
37. O’ConnorT.F., ZaretskiA.V., ShiraviB.A., SavagatrupS., PrintzA.D., DiazM.I., LipomiD.J., Energy Environ. Sci. 7, 370 (2014).
38. MoserR., KettlgruberG., SiketC.M., DrackM., GrazI.M., CakmakU., MajorZ., KaltenbrunnerM., BauerS., Adv. Sci. 3, 1500396 (2016).
39. PrintzA.D., LipomiD.J., Appl. Phys. Rev. 3, 021302 (2016).
40. LeleuxP., RivnayJ., LonjaretT., BadierJ.M., BenarC., HerveT., ChauvelP., MalliarasG.C., Adv. Healthc. Mater. 4, 142 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 483
Total number of PDF views: 2015 *
Loading metrics...

Abstract views

Total abstract views: 2815 *
Loading metrics...

* Views captured on Cambridge Core between 2nd February 2017 - 22nd October 2017. This data will be updated every 24 hours.