Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T14:03:37.962Z Has data issue: false hasContentIssue false

Topological engineering of glasses using temperature-dependent constraints

Published online by Cambridge University Press:  10 January 2017

Morten M. Smedskjaer
Affiliation:
Department of Chemistry and Bioscience, Aalborg University, Denmark; mos@bio.aau.dk
Christian Hermansen
Affiliation:
NamZ Pte. Ltd., Singapore; christian@namz.com.sg
Randall E. Youngman
Affiliation:
Science and Technology Division, Corning Incorporated, USA; youngmanre@corning.com
Get access

Abstract

The properties and functionalities of inorganic glasses can be tuned by adjusting their chemical composition and, in turn, their atomic-scale structure. However, accurate prediction of glass properties from composition has traditionally been impossible. Recent progress in temperature-dependent constraint theory paves the way for the design of new multicomponent glasses with tailored properties. Atoms in network glasses are constrained by their chemical bonds and bond angles, and the strength of these constraints depends on the local topology and the chemical nature of the elements. By counting the number of constraints around both network-forming and network-modifying atoms as a function of both composition and temperature, it is possible to make quantitative connections among composition, structure, and certain macroscopic properties. Here, we review recent developments in glass-structure determination and modeling. We then demonstrate how the structural information is used as input for topological predictions of glass properties such as viscosity and hardness. These predictions enable the design of novel industrial glasses with desired properties and manufacturing attributes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greaves, G.N., Sen, S., Adv. Phys. 56, 1 (2007).Google Scholar
Phillips, J.C., J. Non Cryst. Solids 34, 153 (1979).Google Scholar
Phillips, J.C., Thorpe, M.F., Solid State Commun. 53, 699 (1985).Google Scholar
Gupta, P.K., Mauro, J.C., J. Chem. Phys. 130, 094503 (2009).Google Scholar
Mauro, J.C., Gupta, P.K., Loucks, R.J., J. Chem. Phys. 130, 234503 (2009).Google Scholar
Smedskjaer, M.M., Mauro, J.C., Yue, Y.Z., Phys. Rev. Lett. 105, 115503 (2010).CrossRefGoogle Scholar
Smedskjaer, M.M., Bauchy, M., Appl. Phys. Lett. 107, 141901 (2015).Google Scholar
Pignatelli, I., Kumar, A., Bauchy, M., Sant, G., Langmuir 32, 4434 (2016).Google Scholar
Zachariasen, W.H., J. Am. Chem. Soc. 54, 3841 (1932).Google Scholar
Silver, A.H., Bray, P.J., J. Chem. Phys. 29, 984 (1958).CrossRefGoogle Scholar
Ispas, S., Charpentier, T., Mauri, F., Neuville, D.R., Solid State Sci. 12, 183 (2010).Google Scholar
Smedskjaer, M.M., Front. Mater. 1, 23 (2014).Google Scholar
Smedskjaer, M.M., Mauro, J.C., Youngman, R.E., Hogue, C.L., Potuzak, M., Yue, Y.Z., J. Phys. Chem. B 115, 12930 (2011).Google Scholar
Bauchy, M., Micoulaut, M., J. Non Cryst. Solids 357, 2530 (2011).CrossRefGoogle Scholar
Sun, K.H., J. Am. Ceram. Soc. 30, 277 (1947).Google Scholar
Hermansen, C., Mauro, J.C., Yue, Y.Z., J. Chem. Phys. 140, 154501 (2014).Google Scholar
Hermansen, C., Rodrigues, B., Wondraczek, L., Yue, Y.Z., J. Chem. Phys. 141, 244502 (2014).Google Scholar
Mauro, J.C., Yue, Y.Z., Ellison, A.J., Gupta, P.K., Allan, D.C., Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009).Google Scholar
Zheng, Q.J., Mauro, J.C., Ellison, A.J., Potuzak, M., Yue, Y.Z., Phys. Rev. B Condens. Matter 83, 212202 (2011).Google Scholar
Yue, Y.Z., J. Non Cryst. Solids 355, 737 (2009).CrossRefGoogle Scholar
Adam, G., Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).Google Scholar
Naumis, G.G., Phys. Rev. E 71, 026114 (2005).Google Scholar
Smedskjaer, M.M., Mauro, J.C., Sen, S., Yue, Y.Z., Chem. Mater. 22, 5358 (2010).Google Scholar
Jiang, Q., Zeng, H., Liu, Z., Ren, J., Chen, G., Wang, Z., Sun, L., Zhao, D., J. Chem. Phys. 139, 124502 (2013).CrossRefGoogle Scholar
Hermansen, C., Youngman, R.E., Wang, J., Yue, Y.Z., J. Chem. Phys. 142, 184503 (2015).Google Scholar
Zeng, H., Jiang, Q., Liu, Z., Li, X., Ren, J., Chen, G., Liu, F., Peng, S., J. Phys. Chem. B 118, 5177 (2014).Google Scholar
Hermansen, C., Guo, X.J., Youngman, R.E., Mauro, J.C., Smedskjaer, M.M., Yue, Y.Z., J. Chem. Phys. 143, 064510 (2015).Google Scholar
Yamane, M., Mackenzie, J.D., J. Non Cryst. Solids 15, 153 (1974).Google Scholar
Mauro, J.C., Tandia, A., Vargheese, K.D., Mauro, Y.Z., Smedskjaer, M.M., Chem. Mater. 28, 4267 (2016).Google Scholar