Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 94
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fathi, Amir Ahmadi, M. T. and Ismail, Razali 2016. Carrier velocity effect on carbon nanotube Schottky contact. Semiconductors, Vol. 50, Issue. 8, p. 1056.


    Manzoni, G Ponzoni, S Galimberti, G Scarselli, M Pulci, O Camilli, L Matthes, L Castrucci, P and Pagliara, S 2016. Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles. Nanotechnology, Vol. 27, Issue. 23, p. 235704.


    Zhang, Anqi and Lieber, Charles M. 2016. Nano-Bioelectronics. Chemical Reviews, Vol. 116, Issue. 1, p. 215.


    Zheng, Kun Shao, Ruiwen Wang, Jiangjing Liao, Zhiming Marks, Nigel Chen, Pingping Lu, Wei Han, Xiaodong and Zou, Jin 2016. Fabrication of individual carbon nanotubes and their arrays in a transmission electron microscope. Carbon, Vol. 100, p. 435.


    Ghosh, Kaushik Verma, Yashwant K. and Tan, Chuan Seng 2015. Implementation of carbon nanotube bundles in sub-5 micron diameter through-silicon-via structures for three-dimensionally stacked integrated circuits. Materials Today Communications, Vol. 2, p. e16.


    Gilshteyn, Evgenia and Nasibulin, Albert G. 2015. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). p. 893.

    Jeong, Dong-Cheol Song, Sun Gu Satheeshkumar, Chinnadurai Lee, Yunmi Kim, Kyung-su and Song, Changsik 2015. Enhanced photoinduced electron transfer by multiwalled carbon nanotubes in self-assembled terpyridine polymer networks. Polymer, Vol. 69, p. 39.


    Pintossi, C. Pagliara, S. Drera, G. De Nicola, F. Castrucci, P. De Crescenzi, M. Crivellari, M. Boscardin, M. and Sangaletti, L. 2015. Steering the Efficiency of Carbon Nanotube–Silicon Photovoltaic Cells by Acid Vapor Exposure: A Real-Time Spectroscopic Tracking. ACS Applied Materials & Interfaces, Vol. 7, Issue. 18, p. 9436.


    Qiu, Chenguang Zhang, Zhiyong Zhong, Donglai Si, Jia Yang, Yingjun and Peng, Lian-Mao 2015. Carbon Nanotube Feedback-Gate Field-Effect Transistor: Suppressing Current Leakage and Increasing On/Off Ratio. ACS Nano, Vol. 9, Issue. 1, p. 969.


    Roberts, Samantha P. Barnard, Arthur W. Martin, Christopher M. Blees, Melina K. Alden, Jonathan S. Ruyack, Alexander R. and McEuen, Paul L. 2015. Magnetically Actuated Single-Walled Carbon Nanotubes. Nano Letters, Vol. 15, Issue. 8, p. 5143.


    Castrucci, Paola 2014. Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices. Advances in nano research, Vol. 2, Issue. 1, p. 23.


    Dadrasnia, E. Lamela, H. Kuppam, M. B. Garet, F. and Coutaz, J.-L. 2014. Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements. Advances in Condensed Matter Physics, Vol. 2014, p. 1.


    Dadrasnia, Ehsan Puthukodan, Sujitha Thalakkatukalathil, Vinod V. K. Lamela, Horacio Ducournau, Guillaume Lampin, Jean-Francois Garet, Frédéric and Coutaz, Jean-Louis 2014. Sub-THz Characterisation of Monolayer Graphene. Journal of Spectroscopy, Vol. 2014, p. 1.


    Gong, Qingqing Bhatt, Vijay Deep Albert, Edgar Abdellah, Alaa Fabel, Bernhard Lugli, Paolo and Scarpa, Giuseppe 2014. On the Performance of Solution-Processable Random Network Carbon Nanotube Transistors: Unveiling the Role of Network Density and Metallic Tube Content. IEEE Transactions on Nanotechnology, Vol. 13, Issue. 6, p. 1181.


    Greene-Diniz, Gabriel Jones, Sarah L T Fagas, Giorgos Haverty, Michael Martinez Lacambra, Carlos Shankar, Sadasivan and Greer, James C 2014. Divacancies in carbon nanotubes and their influence on electron scattering. Journal of Physics: Condensed Matter, Vol. 26, Issue. 4, p. 045303.


    Jakubinek, Michael B. 2014. Nanotube Superfiber Materials.


    Kilinc, Deniz and Akan, Ozgur B. 2014. A Theoretical Modeling and Analysis of Communication via Heat Flow at Nanoscale. IEEE Transactions on Communications, Vol. 62, Issue. 10, p. 3600.


    Kim, Tae Geun Kim, Un Jeong Lee, Si Young Lee, Young Hee Yu, Yun Seop Hwang, Sung Woo and Kim, Sangsig 2014. Barrier Height at the Graphene and Carbon Nanotube Junction. IEEE Transactions on Electron Devices, Vol. 61, Issue. 6, p. 2203.


    Pineda, Shafique Han, Zhao and Ostrikov, Kostya 2014. Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases. Materials, Vol. 7, Issue. 7, p. 4896.


    Stevanovic, Ana Ma, Shiliang and Yates, John T. 2014. Photoexcited Electron Hopping between TiO2Particles: Effect of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C, Vol. 118, Issue. 41, p. 23614.


    ×

Electron Transport in Single-Walled Carbon Nanotubes

Abstract
Abstract

Single-walled carbon nanotubes (SWNTs) are emerging as an important new class of electronic materials. Both metallic and semiconducting SWNTs have electrical properties that rival or exceed the best metals or semiconductors known. In this article, we review recent transport and scanning probe experiments that investigate the electrical properties of SWNTs.We address the fundamental scattering mechanisms in SWNTs, both in linear response and at high bias.We also discuss the nature and properties of contacts to SWNTs. Finally, we discuss device performance issues and potential applications in electronics and sensing.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. S. Iijima and T. Ichihashi , Nature 363 (1993) p. 603.

2. D.S. Bethune , C.H. Kiang , M.S. Devries , G. Gorman , R. Savoy , J. Vazquez , and R. Beyers , Nature 363 (1993) p. 605.

3. S.J. Tans , M.H. Devoret , H. Dai , A. Thess , R.E. Smalley , L.J. Georliga , and C. Dekker , Nature 386 (1997) p. 474.

4. M. Bockrath , D.H. Cobden , P.L. McEuen , N.G. Chopra , A. Zettl , A. Thess , and R.E. Smalley , Science 275 (1997) p. 1922.

6. P.L. McEuen , M.S. Fuhrer , and H.K. Park , IEEE Trans. Nanotech. 1 (2002) p. 78.

7. C. Dekker , Physics Today 52 (1999) p. 22.

8. P. Avouris , Acc. Chem. Res. 35 (2002) p. 1026.

10. J. Nygård , D.H. Cobden , M. Bockrath , P.L. McEuen , and P.E. Lindelof , Appl. Phys. A 69 (1999) p. 297.

11. Z. Yao , C. Dekker , and P. Avouris , in Topics in Applied Physics, Vol. 80, edited by M.S. Dresselhaus , G. Dresselhaus , and P. Avouris (Springer-Verlag, Berlin, 2001) p. 147.

12. W. Liang , M. Bockrath , D. Bozovic , J.H. Hafner , M. Tinkham , and H. Park , Nature 411 (2001) p. 665.

13. J. Kong , E. Yenilmez , T.W. Tombler , W. Kim , H. Dai , R.B. Laughlin , L. Liu , C.S. Jayanthi , and S.Y. Wu , Phys. Rev. Lett. 87 106801 (2001).

14. A. Bachtold , M.S. Fuhrer , S. Plyasunov , M. Forero , E.H. Anderson , A. Zettl , and P.L. McEuen , Phys. Rev. Lett. 84 (2000) p. 6082.

15. C.L. Kane , E.J. Mele , R.S. Lee , J.E. Fischer , P. Petit , H. Dai , A. Thess , R.E. Smalley , A.R.M. Verschueren , S.J. Tans , and C. Dekker , Europhys. Lett. 41 (1998) p. 683.

16. A. Javey , J. Guo , M. Paulsson , Q. Wang , D. Mann , M. Lundstrom , and H. Dai , Phys. Rev. Lett. 92 106804 (2004).

17. J.-Y. Park , S. Rosenblatt , Y. Yaish , V. Sazonova , H. Üstünel , S. Braig , T.A. Arias , P.W. Brouwer , and P.L. McEuen , Nano Lett. 4 (2004) p. 517.

18. Z. Yao , C.L. Kane , and C. Dekker , Phys. Rev. Lett. 84 (2000) p. 2941.

19. A. Javey , J. Guo , Q. Wang , M. Lundstrom , and H J. Dai , Nature 424 (2003) p. 654.

20. Y. Yaish , J.-Y. Park , S. Rosenblatt , V. Sazonova , M. Brink , and P.L. McEuen , Phys. Rev. Lett. 92 046401 (2004).

21. D.H. Cobden , M. Bockrath , P.L. McEuen , A.G. Rinzler , and R.E. Smalley , Phys. Rev. Lett. 81 (1998) p. 681.

22. T. Dürkop , T. Brintlinger , and M.S. Fuhrer , in Structural and Electronic Properties of Molecular Nanostructures, AIP Conf. Proc. 633, edited by H. Kuzmany , J. Fink , M. Mehring , and S. Roth (American Institute of Physics, New York, 2002) p. 242.

23. R. Martel , T. Schmidt , H.R. Shea , T. Hertel , and P. Avouris , Appl. Phys. Lett. 73 (1998) p. 2447.

24. R. Martel , V. Derycke , C. Lavoie , J. Appenzeller , K.K. Chan , J. Tersoff , and P. Avouris , Phys. Rev. Lett. 87 256805 (2001).

25. P.L. McEuen , M. Bockrath , D.H. Cobden , Y.-G. Yoon , and S.G. Louie , Phys. Rev. Lett. 83 (1999) p. 5098.

26. A. Bachtold , P. Hadley , T. Nakanishi , and C. Dekker , Science 294 (2001) p. 1317.

27. J. Park and P.L. McEuen , Appl. Phys. Lett. 79 (2001) p. 1363.

28. A. Javey , M. Shim , and H. Dai , Appl. Phys. Lett. 80 (2002) p. 1064.

29. S. Heinze , J. Tersoff , R. Martel , V. Derycke , J. Appenzeller , and P. Avouris , Phys. Rev. Lett. 89 106801 (2002).

30. J. Appenzeller , J. Knoch , V. Derycke , R. Martel , S. Wind , and P. Avouris , Phys. Rev. Lett. 89 126801 (2002).

31. R.J. Chen , N.R. Franklin , K. Jing , C. Jien , T.W. Tombler , Z. Yuegang , and H. Dai , Appl. Phys. Lett. 79 (2001) p. 2258.

32. W. Kim , A. Javey , O. Vermesh , O. Wang , Y.M. Li , and H.J. Dai , Nano Lett. 3 (2003) p. 193.

33. J. Kong , N.R. Franklin , C. Zhou , M.G. Chapline , S. Peng , K. Cho , and H. Dai , Science 287 (2000) p. 622.

34. P.G. Collins , K. Bradley , M. Ishigami , and A. Zettl , Science 287 (2000) p. 1801.

35. M. Bockrath , J. Hone , A. Zettl , P.L. McEuen , A.G. Rinzler , and R.E. Smalley , Phys. Rev. B 61 (2000) p. R10606.

36. J. Kong , C. Zhou , Y.E. , and H. Dai , Appl. Phys. Lett. 77 (2000) p. 3977.

37. V. Derycke , R. Martel , J. Appenzeller , and P. Avouris , Nano Lett. 1 (2001) p. 453.

38. C. Zhou , J. Kong , E. Yenilmez , and H. Dai , Science 290 (2000) p. 1552.

39. J. Kong , J. Cao , and H. Dai , Appl. Phys. Lett. 80 (2002) p. 73.

40. J. Kong and H. Dai , J. Phys. Chem. B 105 (2001) p. 2890.

41. M. Kruger , M.R. Buitelaar , T. Nussbaumer , C. Schonenberger , and L. Forro , Appl. Phys. Lett. 78 (2001) p. 1291.

42. S. Rosenblatt , Y. Yaish , J. Park , J. Gore , V. Sazonova , and P.L. McEuen , Nano Lett. 2 (2002) p. 869.

43. A. Javey , H. Kim , M. Brink , Q. Wang , A. Ural , J. Guo , P. McIntyre , P. McEuen , M. Lundstrom , and H.J. Dai , Nat. Mater. 1 (2002) p. 241.

44. K. Besteman , J.O. Lee , F.G.M. Wiertz , H.A. Heering , and C. Dekker , Nano Lett. 3 (2003) p. 727.

45. R.J. Chen , S. Bangsaruntip , K.A. Drouvalakis , N.W.S. Kam , M. Shim , Y.M. Li , W. Kim , P.J. Utz , and H. Dai , in PNAS: Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 4984.

46. A. Star , J.C.P. Gabriel , K. Bradley , and G. Gruner , Nano Lett. 3 (2003) p. 459.

48. J. Lefebvre , R.D. Antonov , M. Radosavljevic , J.F. Lynch , M. Llaguno , and A.T. Johnson , Carbon 38 (2000) p. 1745.

49. M.S. Fuhrer , J. Nygard , L. Shih , M. Forero , Y.-G. Yoon , M.S.C. Mazzoni , H.J. Choi , J. Ihm , S.G. Louie , A. Zettl , and P.L. McEuen , Science 288 (2000) p. 494.

50. T. Rueckes , K. Kim , E. Joselevich , G.Y. Tseng , C.L. Cheung , and C.M. Lieber , Science 289 (2000) p. 94.

52. J. Cao , Q. Wang , and H.J. Dai , Phys. Rev. Lett. 90 157601 (2003).

53. E.D. Minot , Y. Yaish , V. Sazonova , J.-Y. Park , M. Brink , and P.L. McEuen , Phys. Rev. Lett. 90 156401 (2003).

54. C.L. Cheung , A. Kurtz , H. Park , and C.M. Lieber , J. Phys. Chem. B 106 (2002) p. 2429.

55. S.M. Huang , X.Y. Cai , and J. Liu , J. Am. Chem. Soc. 125 (2003) p. 5636.

56. S. Fan , W. Liang , H. Dang , N. Franklin , T. Tombler , M. Chapline , and H. Dai , Physica E 8 (2000) p. 179.

57. R. Krupke , F. Hennrich , H. von Lohneysen, and M.M. Kappes , Science 301 (2003) p. 344.

58. M.S. Strano , C.B. Huffman , V.C. Moore , M.J. O'Connell , E.H. Haroz , J. Hubbard , M. Miller , K. Rialon , C. Kittrell , S. Ramesh , R.H. Hauge , and R.E. Smalley , J. Phys. Chem. B 107 (2003) p. 6979.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: