Skip to main content Accessibility help

Electronic Mayonnaise: Uniting the Sciences of “Hard” and “Soft” Matter

  • J. Schmalian and P.G. Wolynes


“Soft” condensed-matter science (also known as colloid chemistry) has revealed the nearly zoological complexity of long-lived structures that can arise from the competing interactions working in concert with thermal fluctuations both near and far from equilibrium. “Hard” condensed-matter science has revealed the stark beauty of elementary excitations shimmering on a placid quantum Fermi sea. The study of strongly correlated electronic states of matter is forcing us to unify these often disparate branches of materials science. Explaining confusing phenomena occurring in high-temperature superconductors and related materials seems to require that long-lived electronic structures be generated largely on their own, but perhaps with a little help from lattice disorder.We will explain the fruitful analogy between such systems and classical colloidal systems such as mayonnaise. Ordered crystalline, striped, or checkerboard phases and striped glasses emerge as candidate forms of highly correlated matter that may explain many puzzling observations of electronic materials.



Hide All
1.Einstein, A., Ann. d. Physik 17 (1905) p. 891.
2.Einstein, A., Ann. d. Physik 17 (1905) p. 132.
3.Einstein, A., Ann. d. Physik 17 (1905) p. 549.
4.Dagotto, E., Hotta, T., and Moreo, A., Physics Reports 344 (2001) p. 1.
5.Thomson, J.C., Electrons in Liquid Ammonia (Oxford University Press, London, 1976).
6.Curro, N.J., Hammel, P.C., Suh, B.J., Hücker, M., Büchner, B., Ammerahl, U., and Revcolervschi, A., Phys. Rev. Lett. 85 (2000) p. 642.
7.Panagopoulos, C., Tallon, J.L., Rainford, B.D., Xiang, T., Cooper, J.R., and Scott, C.A., Phys. Rev. B 66 (2002) p. 064501.
8.Emery, V.J. and S Kivelson, A., Physica C 209 (1993) p. 597.
9.Gompper, G. and Schick, M., Self-Assembling Amphiphilic Systems (Academic Press, New York, 1994).
10.Landau, L.D. and Zel'dovich, Ya.B., Acta Phys.-Chim. USSR 18 (1943) p. 194.
11.Mott, N.F., Proc. Phys. Soc. A 62 (1949) p. 416; N.F. Mott, Philos. Mag. 6 (1961) p. 287.
12.Chitra, R. and Kotliar, G., Phys. Rev. Lett. 84 (2000) p. 3678.
13.Deng, Z., Klein, M.L., and Martyna, G.J., J. Chem. Soc. Farad. Trans. 90 (1994) p. 2009.
14.Edwards, P.P., J. Supercond. 13 (2000) p. 933.
15.Ogg, R.A. Jr., Phys. Rev. 69 (1946) p. 243; R.A. Ogg Jr., Phys. Rev. 70 (1946) p. 93.
16.Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev. 108 (1957) p. 1175.
17.Schafroth, M.R., Phys. Rev. 96 (1954) p. 1442.
18.Cho, J.H., Chou, F.C., and Johnston, D.C., Phys. Rev. Lett. 70 (1993) p. 222.
19.Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., and Uchida, S., Nature 375 (1995) p. 561.
20.Schmalian, J. and Wolynes, P.G., Phys. Rev. Lett. 85 (2000) p. 836.
21.Monasson, R., Phys. Rev. Lett. 75 (1995) p. 2847.
22.Park, T., Nussinov, Z., Hazzard, K.R.A., Sidorov, V.A., Balatsky, A.V., Sarrao, J.L., Cheong, S.-W., Hundley, M.F., Jia, J.-S., and Thomson, J.D., Phys. Rev. Lett. 94 017002(2005).
23.Wu, S., Westfahl, H., Schmalian, J., and Wolynes, P.G., Chem. Phys. Lett. 359 (2002) p. 1.
24.Panagopoulos, C. and Dobrosavljevic, V., “Self-Generated Electronic Heterogeneity and Quantum Glassiness in the High Temperature Superconductors,” preprint, cond-mat/0410111 (accessed April 2005).
25.Phillips, J.C., Proc. Natl. Acad. Sciences USA 94 (1997) p. 10532.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed