Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Brumby, Paul E. Yuhara, Daisuke Wu, David T. Sum, Amadeu K. and Yasuoka, Kenji 2016. Cage occupancy of methane hydrates from Gibbs ensemble Monte Carlo simulations. Fluid Phase Equilibria, Vol. 413, p. 242.


    Gillan, M. J. Alfè, D. and Manby, F. R. 2015. Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order Møller-Plesset calculations. The Journal of Chemical Physics, Vol. 143, Issue. 10, p. 102812.


    Liang, Shuai and Kusalik, Peter G. 2015. The nucleation of gas hydrates near silica surfaces. Canadian Journal of Chemistry, Vol. 93, Issue. 8, p. 791.


    Míguez, J. M. Conde, M. M. Torré, J.-P. Blas, F. J. Piñeiro, M. M. and Vega, C. 2015. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line. The Journal of Chemical Physics, Vol. 142, Issue. 12, p. 124505.


    Moustafa, Sabry G. Schultz, Andrew J. and Kofke, David A. 2015. Effects of Finite Size and Proton Disorder on Lattice-Dynamics Estimates of the Free Energy of Clathrate Hydrates. Industrial & Engineering Chemistry Research, Vol. 54, Issue. 16, p. 4487.


    Barnes, Brian C. Beckham, Gregg T. Wu, David T. and Sum, Amadeu K. 2014. Two-component order parameter for quantifying clathrate hydrate nucleation and growth. The Journal of Chemical Physics, Vol. 140, Issue. 16, p. 164506.


    Moustafa, Sabry G. Schultz, Andrew J. and Kofke, David A. 2013. A comparative study of methods to compute the free energy of an ordered assembly by molecular simulation. The Journal of Chemical Physics, Vol. 139, Issue. 8, p. 084105.


    ×

Energy science of clathrate hydrates: Simulation-based advances

  • Amadeu K. Sum (a1), David T. Wu (a2) and Kenji Yasuoka (a3)
  • DOI: http://dx.doi.org/10.1557/mrs.2011.33
  • Published online: 22 March 2011
Abstract
Abstract

The energy science of clathrate hydrates is a rapidly expanding field, with high-performance computing (HPC) playing an ever-growing role to help understand the molecular processes and properties that drive clathrate hydrates to nucleate and grow into crystalline, amorphous, or mixed structures, their non-stoichiometric nature upon formation, the formation mechanism from homogeneous and heterogeneous nucleation, and their stability and limits of metastability. Many of the questions that HPC can help to answer about hydrates are intractable experimentally because of the difficulty of measurements at the length (nanometers) and time (nanoseconds) scales imposed by the fundamental phenomena at the molecular level. At the same time, the length and time scales that are accessible by simulations pose limitations on what can be studied (e.g., phase equilibria and metastability, nucleation mechanisms, non-stoichiometry) and how it can be studied (e.g., Monte Carlo, molecular dynamics, metadynamics, transition path sampling, thermodynamic integration). Ultimately, the energy science of clathrate hydrates will benefit from HPC by gaining insight into the detailed mechanism for formation, dissociation, and stability.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.R. Boswell , Science 325, 957 (2009).

2.A. Graue , B. Kvamme , B.A. Baldwin , J. Stevens , J. Howard , E. Aspenes , G. Ersland , J. Husebø , D. Zornes , SPE J. 13, 146 (2008).

3.T. Sugahara , J.C. Haag , P.S.R. Prasad , A.A. Warntjes , E.D. Sloan , A.K. Sum , C.A. Koh , J. Am. Chem. Soc. 131, 14616 (2009).

4.T. Sugahara , J.C. Haag , A.A. Warntjes , P.S.R. Prasad , E.D. Sloan , C.A. Koh , A.K. Sum , J. Phys. Chem. C 114, 15218 (2010).

6.T. Ogawa , T. Ito , K. Watanabe , K. Tahara , R. Hiraoka , J. Ochiai , R. Ohmura , Y.H. Mori , Appl. Therm. Eng. 26, 2157 (2006).

7.L. Fournaison , A. Delahaye , I. Chatti , J.P. Petitet , Ind. Eng. Chem. Res. 43, 6521 (2004).

10.M.M. Conde , C. Vega , J. Chem. Phys. 133, 064507 (2010).

11.L. Jensen , K. Thomsen , N. von Solms , S. Wierzchowski , M.R. Walsh , C.A. Koh , E.D. Sloan , D.T. Wu , A.K. Sum , J. Phys. Chem. B 114, 5775 (2010).

12.L.U. Baez , P. Clancy . Ann. N.Y. Acad. Sci. 715, 177 (1994).

, , , , , , ().13.M.R. Walsh C.A. Koh E.D. Sloan A.K. Sum D.T. Wu Science 326 10952009

14.M. Matsumoto , S. Saito , I. Ohmine , Nature 416, 409 (2002).

15.J. Zhang , R.W. Hawtin , Y. Yang , E. Nakagava , M. Rivero , S.K. Choi , P.M. Rodger , J. Phys. Chem. B 112, 10608 (2008).

16.C. Moon , R.W. Hawtin , P.M. Rodger , Faraday Disc. 136, 367 (2007).

17.C. Moon , P.C. Taylor , P.M. Rodger , J. Am. Chem. Soc. 125, 4706 (2003).

18.R. Radhakrishnan , B.L. Trout , J. Chem. Phys. 117, 1786 (2002).

19.L.C. Jacobson , W. Hujo , V. Molinero , J. Am. Chem. Soc. 132, 11806 (2010).

20.Y.-T. Tung , L.-J. Chen , Y.-P. Chen , S.-T. Lin , J. Phys. Chem. B 114, 10804 (2010).

21.S. Liang , P.G. Kusalik , Chem. Phys. Lett. 494, 123 (2010).

24.C. Dellago , P.G. Bolhuis , F.S. Csajka , D. Chandler , J. Chem. Phys. 108, 1964 (1998).

25.B. Peters , N. Zimmerman , G.T. Beckham , J.W. Tester , B.L. Trout , J. Am. Chem. Soc. 130, 17342 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×