Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-27T12:41:31.342Z Has data issue: false hasContentIssue false

High-performance antireflection coatings utilizing nanoporous layers

Published online by Cambridge University Press:  10 June 2011

David J. Poxson
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; poxsod@rpi.edu
Mei-Ling Kuo
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; kuom@rpi.edu
Frank W. Mont
Affiliation:
Raydex Technology, Inc., Cambridge MA 02138; montf@raydextech.com
Y.-S. Kim
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; kimy10@rpi.edu
Xing Yan
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; yanx@rpi.edu
Roger E. Welser
Affiliation:
Magnolia Solar, Inc.; rwelser@magnoliasolar.com
Ashok K. Sood
Affiliation:
Magnolia Solar Inc.; aksood@magnoliasolar.com
Jaehee Cho
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; choj6@rpi.edu
Shawn-Yu Lin
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; sylin@rpi.edu
E. Fred Schubert
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; efschubert@rpi.edu
Get access

Abstract

To harness the full spectrum of solar energy, optical reflections at the surface of a solar photovoltaic cell must be reduced as much as possible over the relevant solar spectral range and over a wide range of incident angles. The development of antireflection coatings embodying omni-directionality over a wide range of wavelengths is challenging. Recently, nanoporous films, fabricated by oblique-angle deposition and having tailored- and very low-refractive index properties, have been demonstrated. Tailorability of the refractive index and the ability to realize films with a very low-refractive index are properties critical in the performance of broadband, omnidirectional antireflection coatings. As such, nanoporous materials are ideally suited for developing near-perfect antireflection coatings. Here, we discuss multilayer antireflection coatings with near-perfect transmittance over the spectral range of 400−2000 nm and over widely varying angles of acceptance, 0−90°. The calculated solar optical-to-electrical efficiency enhancement that can be attained with nanoporous multilayer coatings over single-layer quarter-wave films is 18%, making these coatings highly attractive for solar cell applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xi, J.-Q., Kim, J.K., Schubert, E.F., Ye, D., Juneja, J.S., Lu, T.-M., Lin, S.-Y., Opt. Lett. 31, 601 (2006).Google Scholar
2.Xi, J.-Q., Kim, J.K., Schubert, E.F., Nano Lett. 5, 1385 (2005).Google Scholar
3.Xi, J.-Q., Schubert, M.F., Kim, J.K., Schubert, E.F., Chen, M., Lin, S.-Y., Liu, W., Smart, J.A., Nat. Photonics 1, 176 (2007).Google Scholar
4.Robbie, K., Friedrich, L.J., Dew, S.K., Smy, T., Brett, M.J., J. Vac. Sci. Technol. A, 13, 1032 (1995).Google Scholar
5.Ma, Y., Liu, F., Zhu, M., Yin, P., Thin Solid Films, 3492 (2009).Google Scholar
6.Chen, H., Lin, H., Wu, C., Chen, W., Chen, J., Gwo, S., Optics Express, 16, 8106 (2008).Google Scholar
7.Kwon, J.T., Shin, H.G., Seo, Y.H., Kim, B.H., Lee, H.G., Lee, J.S., Current Applied Physics, 9, 81 (2009).Google Scholar
8.Wang, H., Lai, K., Lin, Y., Lin, C., He, J., Langmuir, 26, 12855 (2010).Google Scholar
9.Hawkeye, M.M., Brett, M.J., Phys. Status Solidi A, 206 (5), 940 (2009).Google Scholar
10.Garcia-Martin, J.M., Alvarez, R., Romero-Gomez, P., Cebollada, A., Palmero, A., Appl. Phys. Lett. 97, 173103 (2010).Google Scholar
11.He, Y., Zhao, Y., Crystal Growth and Design, 10, 440 (2010).Google Scholar
12.Lakhtakia, A., Messier, R., Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005).Google Scholar
13.Kundt, A., Ann. Phys. Chem. 27, 59 (1886).Google Scholar
14.Robbie, K., Brett, M.J., Lakhtakia, A., Nature 384, 616 (1996).Google Scholar
15.Hawkeye, M.M., Brett, M.J., J. Vac. Sci. Technol., A 25, 1317 (2007).Google Scholar
16.Zhao, Y.P., Ye, D.X., Wang, G.C., Lu, T.M., Nano Lett. 2, 351 (2002).Google Scholar
17.Robbie, K., Brett, M.J., J. Vac. Sci. Technol., A 15, 1460 (2009).Google Scholar
18.Kesapragada, S.V., Gall, D., Thin Solid Films 494, 234 (2006).Google Scholar
19.Ye, D.X., Zhao, Y.-P., Yang, G.-R., Zhao, Y.-G., Wang, G.-C., Lu, T.-M., Nanotechnology 13, 615 (2002).Google Scholar
20.Jensen, M.O., Brett, M.J., Appl. Phys. A 80, 763 (2005).Google Scholar
21.Nieuwenhuizen, J.M., Haanstra, H.B., Philips Tech. Rev. 27, 87 (1966).Google Scholar
22.Tait, R.N., Smy, T., Brett, M.J., Thin Solid Films 226, 196 (1993).Google Scholar
23.Meakin, P., Phys. Rev. A 38, 994 (1988).Google Scholar
24.Lichter, S., Chen, J., Phys. Rev. Lett. 56, 1396 (1986).Google Scholar
25.Poxson, D.J., Mont, F.W., Schubert, M.F., Kim, J.K., Schubert, E.F., Appl. Phys. Lett. 93, 101914 (2008).Google Scholar
26.Krause, K.M., Taschuk, M.T., Harris, K.D., Rider, D.A., Wakefield, N.G., Sit, J.C., Buriak, J.M., Thommes, M., Brett, M.J., Langmuir 26, 4368 (2009).Google Scholar
27.Southwell, W.H., Opt. Lett. 8, 584 (1983).Google Scholar
28.Kuo, M.L., Poxson, D.J., Kim, Y.S., Mont, F.W., Kim, J.K., Schubert, E.F., Lin, S., Opt. Lett. 33, 2527 (2008).Google Scholar
29.Schubert, M.F., Poxson, D.J., Mont, F.W., Kim, J.K., Schubert, E.F., Appl. Phys. Express 3, 2502 (2010).Google Scholar
30.Poxson, D.J., Schubert, M.F., Mont, F.W., Schubert, E.F., Kim, J.K., Opt. Lett. 34, 728 (2009).Google Scholar
31.Chhajed, S., Schubert, M.F., Kim, J.K., Schubert, E.F., Appl. Phys. Lett. 93, 251108 (2008).Google Scholar
32.Schubert, M.F., Mont, F.W., Chhajed, S., Poxson, D.J., Kim, J.K., Schubert, E.F., Opt. Express 16, 5290 (2008).Google Scholar