Skip to main content

Hybrid Organic–Nanocrystal Solar Cells


Recent results have demonstrated that hybrid photovoltaic cells based on a blend of inorganic nanocrystals and polymers possess significant potential for low-cost, scalable solar power conversion. Colloidal semiconductor nanocrystals, like polymers, are solution processable and chemically synthesized, but possess the advantageous properties of inorganic semiconductors such as a broad spectral absorption range and high carrier mobilities. Significant advances in hybrid solar cells have followed the development of elongated nanocrystal rods and branched nanocrystals, which enable more effective charge transport. The incorporation of these larger nanostructures into polymers has required optimization of blend morphology using solvent mixtures. Future advances will rely on new nanocrystals, such as cadmium telluride tetrapods, that have the potential to enhance light absorption and further improve charge transport. Gains can also be made by incorporating application-specific organic components, including electroactive surfactants which control the physical and electronic interactions between nanocrystals and polymer.

Hide All
1.Yu G. and Heeger A.J., J. Appl. Phys. 78 (1995) p. 4510.
2.Halls J.J.M., Walsh C.A., Greenham N.C., Marseglia E.A., Friend R.H., Moratti S.C., and Holmes A.B., Nature 376 (1995) p. 498.
3.Yu G., Gao J., Hummelen J.C., Wudl F., and Heeger A.J., Science 270 (1995) p. 1789.
4.Tang C.W., Appl. Phys. Lett. 48 (1986) p. 183.
5.Peumans P., Uchida S., and Forrest S.R., Nature 425 (2003) p. 158.
6.Padinger F., Rittberger R.S., and Sariciftci N., Adv. Funct. Mater. 13 (2003) p. 85.
7.Alivisatos A.P., Science 271 (1996) p. 933.
8.Murray C.B., Norris D.J., and Bawendi M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.
9.Peng X., Manna L., Yang W., Wickham J., Kadavanich A., and Alivisatos A.P., Nature 404 (2000) p. 59.
10.Manna L.E., Scher E.C., and Alivisatos A.P., J. Am. Chem. Soc. 122 (2000) p. 12700.
11.Bawendi M., Steigerwald M.L., and Brus L.E., Annu. Rev. Phys. Chem. 41 (1990) p. 477.
12.Li L., Hu J., Yang W., and Alivisatos A.P., Nano Lett. 1 (2001) p. 349.
13.Yu W.W., Qu L., Guo W., and Peng X., Chem. Mater. 15 (2003) p. 2854.
14.Green M.A., Prog. Photovoltaics 9 (2001) p. 137.
15.Greenham N.C., Peng X., and Alivisatos A.P., Phys. Rev. B 54 (1996) p. 17628.
16.Ginger D.S. and Greenham N.C., Synth. Met. 101 (1999) p. 425.
17.Huynh W.U., Peng X., and Alivisatos A.P., Adv. Mater. 11 (1999) p. 923.
18.Arias A.C., MacKenzie J.D., Stevenson R., Halls J.J.M., Inbasekaran M., Woo E.P., Richards D., and Friend R.H., Macromolecules 34 (2001) p. 6005.
19.Huynh W.U., Dittmer J.J., Libby W.C., Whiting G.L., and Alivisatos A.P., Adv. Funct. Mater. 13 (2003) p. 73.
20.Cui Y., Zhong Z., Wang W.U., and Lieber C.M., Nano Lett. 3 (2003) p. 149.
21.Ginger D.S. and Greenham N.C., Synth. Met. 124 (2001) p. 117.
22.Huynh W.U., Dittmer J.J., and Alivisatos A.P., Science 295 (2002) p. 2425.
23.Sun B.E., Marx E., and Greenham N.C., Nano Lett. 3 (2003) p. 961.
24.Manna L., Milliron D.J., Meisel A., Scher E.C., and Alivisatos A.P., Nature Mater. 2 (2003) p. 382.
25.Arici E., Sariciftci N.S., and Meissner D., Adv. Funct. Mater. 13 (2003) p. 165.
26.Milliron D.J., Alivisatos A.P., Pitois C., Edder C., and Frechet J.M.J., Adv. Mater. 15 (2003) p. 58.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 503 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.