Skip to main content Accessibility help

Importance of Nanosensors: Feynman's Vision and the Birth of Nanotechnology

  • Jozef T. Devreese

In his visionary 1959 lecture at Caltech, Richard P. Feynman foresaw the potential of the ability to manipulate matter at the atomic scale. In this article, adapted from Integrated Nanosensors, MRS Symposium Proceedings Volume 952E, edited by I.K. Schuller, Y. Bruynseraede, L.M. Lechuga, and E. Johnson (2007), Jozef T. Devreese (University of Antwerp) discusses implementations of Feynman's vision in the field of nanosensors and perspectives of its further development and applications.

Nanoparticles are unique tools as sensors. Particles with sizes at the nanoscale reveal physical properties that do not exist in bulk materials; these properties can operate well inside living cells. Nanosensors possess unique physical characteristics. Their sensitivity can be orders of magnitude better than that of conventional devices. Nanosensors possess such performance advantages as fast response and portability. State-of-the-art nanosensors are based on various advanced materials (quantum dots, nanoshells, nanopores, carbon nanotubes, etc.). Nanosensors furthermore allow for building an entirely new class of integrated devices that provide the elemental base for “intelligent sensors” capable of data processing, storage, and analysis. Advances can open unprecedented perspectives for the application of nanosensors in various fields, for example, as molecular-level diagnostic and treatment instruments in medicine and as networks of nanorobots for real-time monitoring of physiological parameters of a human body.

Hide All
1.Feynman, R.P., Eng. Sci. 23, 22 (1960). Also available at (accessed August 2007).
2. Various photographs of the McLellan micromotor are archived on the Web at the following URLs: search_catalog.cfm?results_file=Detail_View=1=0=McLellan===; catalog.cfm?results_file=Detail_View=1=1= McLellan===; cfm?results_file=Detail_View=1 =2=McLellan===; http:// results_file=Detail_View= 1=3=McLellan ===; 3785509.stm/ (accessed August 2007).
4.Fennimore, A.M., Yuzvinsky, T.D., Han, W.-Q., Fuhrer, M.S., Cumings, J., Zettl, A., Nature 424, 408 (2003).
5.Bennewitz, R., Crain, J.N., Kirakosian, A., Lin, J.-L., McChesney, J.L., Petrovykh, D.Y., Himpsel, F.J., Nanotechnology 13, 499 (2002).
6.Himpsel, F.J., “Nanoscale Memory,” http://∼himpsel/memory.html (accessed August 2007).
7.Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L., Halas, N.J., Appl. Phys. Lett. 82, 257 (2003).
8.Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J., Nano Lett. 6, 827 (2006).
9.Liao, H., Nehl, C.L., Hafner, J.H., Nanomedicine 1, 201 (2006).
10.Herrera, A.P., Resto, O., Briano, J.G., Rinaldi, C., Nanotechnology 16, S618 (2005).
11. International Human Genome Sequencing Consortium, “Initial Sequencing and Analysis of the Human Genome,” Nature 409, 860 (2001).
12.Jiang, J., Tsao, S., O'Sullivan, T., Zhang, W., Lim, H., Sills, T., Mi, K., Razeghi, M., Brown, G.J., Tidrow, M.Z., Appl. Phys. Lett. 84, 2166 (2004).
13.Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Nature Mater. 4, 435 (2005).
14.Fomin, V.M., Gladilin, V.N., Devreese, J.T., Pokatilov, E.P., Balaban, S.N., Klimin, S.N., Phys. Rev. B 57, 2415 (1998).
15.Fonoberov, V.A., Pokatilov, E.P., Fomin, V.M., Devreese, J.T., Phys. Rev. Lett. 92, 127402 (2004).
16.Zhang, C.-Y., Yeh, H.-C., Kuroki, M.T., Wang, T.-H., Nature Mater. 4, 826 (2005).
17.Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C., Nature Mater. 2, 537 (2003).
18.Storm, A.J., Chen, J.H., Zandbergen, H.W., Dekker, C., Phys. Rev. E 71, 051903 (2005).
19.Stampfer, K.J., Jungen, A., Hierold, C., IEEE Sens. J. 6, 613 (2006).
20. SENSATION 2nd Newsletter ( January 14, 2005) p. 6. Also available on the Web at URL (accessed August 2007).
21.Buxton, D.B., Lee, S.C., Wickline, S.A., Ferrari, M., Circulation 108, 2737 (2003).
22.Barone, P.W., Baik, S., Heller, D.A., Strano, M.S., Nature Mater. 4, 86 (2005).
23.Heller, D.A., Jeng, E.S., Yeung, T.-K., Martinez, B.M., Moll, A.E., Gastala, J.B., Strano, M.S., Science 311, 508 (2006).
24.Heller, D.A., “Single-Walled Carbon Nanotubes Wrapped with DNA Serve as Sensors in Living Cells,” in Nanotechnology News ( January 31, 2006). Also available on the Web at URL (accessed August 2007).
25.Ziegler, K.J., Trends Biotechnol. 23, 440 (2005).
26.Blau, W.J., Fleming, A.J., Science 304, 1457 (2004).
27.Freitas, R.A. Jr., Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Georgetown, TX, 1999).
28.Lent, C.S., Tougaw, C.S., Porod, W., Bernstein, G.H., Nanotechnology 4, 49 (1993).
29.Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G.H., Lent, C.S., Merz, J.L., Porod, W., J. Appl. Phys. 85, 4283 (1999).
30.Staedter, T., “Dermal Display Gets under the Skin,” (accessed August 2007).
31.Butler, D., Nature 440, 402 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed