Skip to main content Accessibility help

Metal–organic frameworks for thermoelectric energy-conversion applications

  • A. Alec Talin (a1), Reese E. Jones (a2) and Patrick E. Hopkins (a3)


Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of finding stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this article, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.



Hide All
1. Rowe, D.M., Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, FL, 2005).
2. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J., Science 321, 554 (2008).
3. Weathers, A., Khan, Z.U., Brooke, R., Evans, D., Pettes, M.T., Andreasen, J.W., Crispin, X., Shi, L., Adv. Mater. 27, 2101 (2015).
4. Liu, J., Wang, X., Li, D., Coates, N.E., Segalman, R.A., Cahill, D.G., Macromolecules 48, 585 (2015).
5. Sheng, P., Sun, Y., Jiao, F., Di, C., Xu, W., Zhu, D., Synth. Met. 193, 1 (2014).
6. Sun, Y., Sheng, P., Di, C., Jiao, F., Xu, W., Qiu, D., Zhu, D., Adv. Mater. 24, 932 (2012).
7. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Science 320, 634 (2008).
8. Yan, X.A., Poudel, B., Ma, Y., Liu, W.S., Joshi, G., Wang, H., Lan, Y.C., Wang, D.Z., Chen, G., Ren, Z.F., Nano Lett. 10, 3373 (2010).
9. Kanatzidis, M.G., MRS Bull. 40, 687 (2015).
10. Bahk, J.-H., Fang, H., Yazawa, K., Shakouri, A., J. Mater. Chem. C 3, 10362 (2015).
11. Zhang, Q., Sun, Y., Xu, W., Zhu, D., Adv. Mater. 26, 6829 (2014).
12. Chen, Y., Zhao, Y., Liang, Z., Energy Environ. Sci. 8, 401 (2015).
13. Heeger, A.J., Chem. Soc. Rev. 39, 2354 (2010).
14. Bubnova, O., Khan, Z.U., Wang, H., Braun, S., Evans, D.R., Fabretto, M., Hojati-Talemi, P., Dagnelund, D., Arlin, J.B., Geerts, Y.H., Desbief, S., Breiby, D.W., Andreasen, J.W., Lazzaroni, R., Chen, W.M.M., Zozoulenko, I., Fahlman, M., Murphy, P.J., Berggren, M., Crispin, X., Nat. Mater. 13, 662 (2014).
15. Kim, G.H., Shao, L., Zhang, K., Pipe, K.P., Nat. Mater. 12, 719 (2013).
16. Russ, B., Robb, M.J., Brunetti, F.G., Miller, P.L., Perry, E.E., Adv. Mater. 26, 3473 (2014).
17. Pajerowski, D.M., Watanabe, T., Yamamoto, T., Einaga, Y., Phys. Rev. B Condens. Matter 83, 153202 (2011).
18. Gliemann, G., Yersin, H., Struct. Bond. 62, 87 (1985).
19. Erickson, K.J., Leonard, F., Stavila, V., Foster, M.E., Spataru, C.D., Jones, R.E., Foley, B.M., Hopkins, P.E., Allendorf, M.D., Talin, A.A., Adv. Mater. 27, 3453 (2015).
20. Talin, A.A., Centrone, A., Ford, A.C., Foster, M.E., Stavila, V., Haney, P., Kinney, R.A., Szalai, V., El Gabaly, F., Yoon, H.P., Leonard, F., Allendorf, M.D., Science 343, 66 (2014).
21. Zhuang, J.-L., Ar, D., Yu, X.-J., Liu, J.-X., Terfort, A., Adv. Mater. 25, 4631 (2013).
22. Cahill, D.G., Rev. Sci. Instrum. 75, 5119 (2004).
23. Slack, G.A., Rowe, D., CRC Thermoelectrics Handbook (CRC Press, Boca Raton, FL, 1995).
24. Allen, P.B., Feldman, J.L., Fabian, J., Wooten, F., Philos. Mag. B 79, 1715 (1999).
25. Shenogin, S., Bodapati, A., Keblinski, P., McGaughey, A.J.H., J. Appl. Phys. 105, 034906 (2009).
26. Larkin, J.M., McGaughey, A.J.H., Phys. Rev. B 89, 144303 (2014).
27. Braun, J.L., Baker, C.H., Giri, A., Elahi, M., Artyushkova, K., Beechem, T.E., Norris, P.M., Leseman, Z.C., Gaskins, J.T., Hopkins, P.E., Phys. Rev. B 93, 140201 (2016).
28. Einstein, A., Ann. Phys. 35, 679 (1911).
29. Cahill, D.G., Watson, S.K., Pohl, R.O., Phys. Rev. B 46, 6131 (1992).
30. Huang, B., McGaughey, A., Kaviany, M., Int. J. Heat Mass Transf. 50, 393 (2007).
31. Wang, X., Guo, R., Xu, D., Chung, J., Kaviany, M., Huang, B., J. Phys. Chem. C, 119, 26000 (2015).
32. Cahill, D.G., Pohl, R.O., Annu. Rev. Phys. Chem. 39, 93 (1988).
33. Nolas, G.S., Cohn, J., Slack, G., Phys. Rev. B 58, 164 (1998).
34. Nolas, G.S., Poon, J., Kanatzidis, M., MRS Bull. 31, 199 (2006).
35. Bentien, A., Christensen, M., Bryan, J., Sanchez, A., Paschen, S., Steglich, F., Stucky, G., Iversen, B., Phys. Rev. B Condens. Matter 69, 045107 (2004).
36. McGaughey, A., Kaviany, M., Int. J. Heat Mass Transf. 47, 1799 (2004).
37. Shi, X., Kong, H., Li, C.-P., Uher, C., Yang, J., Salvador, J., Wang, H., Chen, L., Zhang, W., Appl. Phys. Lett. 92, 182101 (2008).
38. Tadano, T., Gohda, Y., Tsuneyuki, S., Phys. Rev. Lett. 114, 095501 (2015).
39. Qiu, W., Xi, L., Wei, P., Ke, X., Yang, J., Zhang, W., Proc. Natl. Acad. Sci. U.S.A. 111, 15031 (2014).
40. Kittel, C., Introduction to Solid State Physics, 8th ed. (Wiley Hoboken, NJ, 2015), chap. 4.
41. Huang, B.L., Ni, Z., Millward, A., McGaughey, A.J.H., Uher, C., Kaviany, M., Yaghi, O., Int. J. Heat Mass Transf. 50, 405 (2007).
42. Duda, J.C., Hopkins, P.E., Shen, Y., Gupta, M.C., Phys. Rev. Lett. 110, 015902 (2013).
43. Duda, J.C., Hopkins, P.E., Shen, Y., Gupta, M.C., Appl. Phys. Lett. 102, 251912 (2013).
44. Tang, X., Xie, W., Li, H., Zhao, W., Zhang, Q., Niino, M., Appl. Phys. Lett. 90, 12102 (2007).
45. Zhao, X.B., Ji, X.H., Zhang, Y.H., Zhu, T.J., Tu, J.P., Zhang, X.B., Appl. Phys. Lett. 86, 062111 (2005).
46. Jiang, X.-F., Xu, J.-K., Lu, B.-Y., Xie, Y., Huang, R.-J., Li, L.-F., Chin. Phys. Lett. 25, 6 (2008).


Related content

Powered by UNSILO

Metal–organic frameworks for thermoelectric energy-conversion applications

  • A. Alec Talin (a1), Reese E. Jones (a2) and Patrick E. Hopkins (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.