Skip to main content
×
Home

Molecular-Beam Epitaxy and Device Applications of III-V Semiconductor Nanowires

Abstract

A scaling-down of feature sizes into the nanometer range is a common trend in silicon and compound semiconductor advanced devices. That this trend will continue is clearly evidenced by the fact that the “roadmap” for the Si ultralarge-scale-integration circuit (USLI) industry targets production-level realization of a 70-nm minimum feature size for the year 2010. GaAs- and InP-based heterostructure devices such as high-electron-mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) have made remarkable progress by miniaturization, realizing ultrahigh speeds approaching the THz range with ultralow power consumption. Due to progress in nanofabrication technology, feature sizes of scaled-down transistors are rapidly approaching the Fermi wavelength of electrons in semiconductors, even at the production level. This fact may raise some concerns about the operation of present-day devices based on semiclassical principles.

However, the progress of nanofabrication technology has opened up the exciting possibility of constructing novel quantum devices, based directly on quantum mechanics, by utilizing artificial structures such as quantum wells, wires, and dots. In these structures, new physical effects appear, such as the formation of new quantum states in single and coupled quantum structures, artificial miniband formation in superlattices, tunneling and resonant tunneling in single and multiple barriers, propagation of phase-coherent guided electron waves in quantum wires, conductance oscillations in small tunnel junctions due to single-electron tunneling, and so on. We expect that these effects will offer rich functionality in next-generation semiconductor quantum ULSIs based on artificial quantum structures, with feature sizes in the range of one to a few tens of nanometers. Beyond this, molecular-level ULSIs using exotic materials and various chemical and electrochemical processes other than the standard semiconductor ones may appear, butat present, they still seem to be too far in the future for realistic consideration for industrial applications.

Copyright
References
Hide All
1.van Wees B.J., van Houten H., Beenakker C.W.J., Williamson J.G., Kouwenhoven L.P., van der Marel D., and Foxon C.T., Phys. Rev. Lett. 60 (1988) p. 848.
2.Madhukar A., Rajkumar K.C., and Chen P., Appl. Phys. Lett. 62 (1993) p. 1547.
3.Kapon E., Hwang D.M., and Bhat R., Phys. Rev. Lett. 63 (1989) p. 430.
4.Fukui T., Ando S, and Fukai Y., Appl. Phys. Lett. 57 (1990) p. 1029.
5.Matsumoto K., Ishii M., Segawa K., Oka Y., Vartanian J.B., and Harris J.S., Appl. Phys. Lett. 68 (1996) p. 34.
6.Kawabe M., J. Cryst. Growth 150 (1995) p. 370.
7.Hashizume T., Okada H., Jinushi K., and Hasegawa H., Jpn. J. Appl. Phys. 34 (1995) p. L635.
8.Hasegawa H., Hashizume T., Okada H., and Jinushi K., J. Vac. Sci. Technol., B 13 (1995) p. 1744.
9.Hashizume T., Okada H., and Hasegawa H., Physica B 227 (1996) p. 42.
10.Okada H., Kasai S., Fujikura H., Hashizume T., and Hasegawa H., Jpn. J. Appl. Phys. 36 (1997) p. 4156.
11.Nakamura J., Kudoh T., Okada H., and Hasegawa H., in Inst. Phys. Conf. Ser. (Institute of Physics, New York) in press.
12.Fujikura H. and Hasegawa H., J. Electron. Mater. 25 (1996) p. 619.
13.Kihara M., Fujikura H., and Hasegawa H., Appl. Surf. Sci. 117/118 (1997) p. 695.
14.Fujikura H., Hanada Y., Kihara M., and Hasegawa H., Jpn. J. Appl. Phys. 37 (1998) p. 1532.
15.Muranaka T., Okada H., Fujikura H., and Hasegawa H., Jpn. J. Appl. Phys. 38 (1999) p. 1071.
16.Ono N., Fujikura H., and Hasegawa H., in Inst. Phys. Conf. Ser. (Institute of Physics, New York) in press.
17.Petrosyan G.A. and Shik A.Y., Sov. Phys. Semicond. 23 (1989) p. 696.
18.Tarucha S., Honda T., and Saku T., Solid State Commun. 94 (1995) p. 413.
19.Ogata M. and Fukuyama H., Phys. Rev. Lett. 73 (1994) p. 468.
20.Fukuyama H., Kohno H., and Shirasaki R., J. Phys. Soc. Jpn. 62 (1993) p. 1109.
21.Shitara T., Tornow M., Kurtenbach A., Weiss D.W., Eberl K., and von Klitzing K., Appl. Phys. Lett. 66 (1995) p. 2385.
22.Nakamura Y., Tsuchiya M., Koshiba S., Noge H., and Sakaki H., Appl. Phys. Lett. 64 (1994) p. 2552.
23.Hanada Y., Ono N., Fujikura H., and Hasegawa H., Solid-State Electron. 42 (1998) p. 1413.
24.Fujikura H., Muranaka T., and Hasegawa H., Microelectron. J. 30 (1999) p. 397.
25.Jinushi K., Okada H., Hashizume T., and Hasegawa H., Jpn. J. Appl. Phys. 35 (1996) p. 1132.
26.Kasai S., Jinushi K., Tomozawa H., and Hasegawa H., Jpn. J. Appl. Phys. 36 (1997) p. 1678.
27.Satoh Y., Okada H., Jinushi K., Fujikura H., and Hasegawa H., Jpn. J. Appl. Phys. 38 (1999) p. 410.
28.Okada H., Fujikura H., Hashizume T., and Hasegawa H., Jpn. J. Appl. Phys. 36 (1997) p. 1672.
29.Okada H., Fujikura H., Hashizume T., and Hasegawa H., Solid-State Electron. 42 (1998) p. 1419.
30.Zimmerli G., Kautz R.L., and Martinis J.M., Appl. Phys. Lett. 61 (1992) p. 2616.
31.Smith R.A. and Ahmed H., Appl. Phys. Lett. 71 (1997) p. 3838.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 103 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 11th December 2017. This data will be updated every 24 hours.