Skip to main content Accessibility help
×
Home

Nanocomposite Hard Coatings for Wear Protection

  • Jörg Patscheider

Abstract

Nanocomposite thin films successfully promote hardness, oxidation resistance, improved wear behavior, and other properties relevant for wear-reducing coatings. Such coatings are composed of nanocrystalline grains of transition-metal nitrides or carbides surrounded by an amorphous hard matrix. The properties of nanocomposite coatings, especially hardness, are directly linked to nanostructure. The codeposition of the amorphous and nanocrystalline phases of different compositions results in different morphologies, which in turn affect the coating's properties. A maximum hardness ranging from 30 GPa to reported values above 60 GPa has been observed for most nanocomposite coatings. To obtain enhanced hardness, the domain size of the nanocrystalline phase must be below 10 nm, while the thickness of the amorphous layer separating the nanocrystals must be maintained at only a few atomic bond lengths. The prime reason for the hardness enhancement is the absence of dislocation activity.

Copyright

References

Hide All
1.Teter, D.M., MRS Bull. 23 (1) (1998) p. 22.
2.Holleck, H., J. Vac. Sci. Technol., A 4 (6) (1986) p. 2661.
3.Knotek, O., Böhmer, M., and Leyendecker, T., J. Vac. Sci. Technol., A 4 (6) (1986) p. 2695.
4.Münz, W.-D., J. Vac. Sci. Technol., A 4 (6) (1986) p. 2717.
5.McIntyre, D., Greene, J.E., Håkansson, G., Sundgren, J.-E., and Münz, W.-D., J. Appl. Phys. 67 (3) (1990) p. 1542.
6.Valvoda, V., Surf. Coat. Technol. 80 (1996) p. 61.
7.Robertson, J., Mater. Sci. Eng., R 37 (2002) p. 129.
8.Koehler, J.S., Phys. Rev. B 2 (2) (1970) p. 547.
9.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7 (4) (1992) p. 901.
10.Barnett, S. and Madan, A., Phys. World (January 1998) p. 45.
11.Setoyama, M., Nakayama, A., Tanaka, M., Kitagawa, N., and Nomura, T., Surf. Coat. Technol. 86–87 (1996) p. 225.
12.Holleck, H. and Schier, V., Surf. Coat Technol. 76 (1–3) (1995) p. 328.
13.Chu, X. and Barnett, S.A., J. Appl. Phys. 77 (9) (1995) p. 4403.
14.Sproul, W.D., Science 273 (1996) p. 889.
15.Hirai, T. and Hayashi, S., J. Mater. Sci. 17 (1982) p. 1320.
16.Li, S., Shi, Y., and Peng, H., Plasma Chem. Plasma Process. 21 (3) (1992) p. 287.
17.Veprřek, S., Reiprich, S., and Shizhi, L., Appl. Phys. Lett. 66 (20) (1995) p. 2640.
18.Nesladek, P. and Veprřek, S., Phys. Status Solidi A 177 (2000) p. 53.
19.Veprřek, S., Haussmann, M., and Reiprich, S., J. Vac. Sci. Technol., A 14 (1996) p. 46.
20.Diserens, M., Patscheider, J., and Lévy, F., Surf. Coat. Technol. 108–109 (1998) p. 241.
21.Vaz, F., Rebouta, L., Ramos, S., Cavaleiro, A., da Silva, M.F., and Soares, J.C., Surf. Coat. Technol. 100–101 (1–3) (1998) p. 110.
22.He, J.L., Chen, C.K., and Hon, M.H., Mater. Chem. Phys. 44 (1996) p.9.
23.Vaz, F., Rebouta, L., Goudeau, P., Girardeau, T., Pacaud, J., Riviere, J.-P., and Traverse, A., Surf. Coat. Technol. 146–147 (2001) p. 274.
24.Sambasivan, S. and Petuskey, W.T., J. Mater. Res. 9 (9) (1994) p. 2362.
25.Münz, W.-D., Hauzer, F.J.M., Schulze, D., and Buil, B., Surf. Coat. Technol. 49 (1991) p. 161.
26.Patscheider, J., Zehnder, T., and Diserens, M., Surf. Coat. Technol. 146–147 (2001) p. 201.
27.Diserens, M., Patscheider, J., and Lévy, F., Surf. Coat. Technol. 120–121 (1999) p. 158.
28.Sun, X., Reid, J.S., Kolawa, E., and Nicolet, M.-A., J. Appl. Phys. 81 (2) (1997) p. 656.
29.Chen, Y.-H., Lee, K.W., Chiou, W.-A., Chung, Y.-W., and Keer, L.M., Surf. Coat. Technol. 146–147 (2001) p. 209.
30.Diserens, M., dissertation no. 21290, EPFL, Lausanne, 2000.
31.Zehnder, T. and Patscheider, J., Surf. Coat. Technol. 133–134 (2000) p. 138.
32.Voevodin, A.A. and Zabinski, J.S., J. Mater. Sci. 33 (1998) p. 319.
33.Leonhardt, A., Liepack, H., and Bartsch, K., Surf. Coat. Technol. 133–134 (2000) p. 186.
34.Voevodin, A.A., Rebholz, C., Schneider, J.M., Stevenson, P., and Matthews, A., Surf. Coat. Technol. 73 (1995) p. 185.
35.Voevodin, A.A., Capano, M.A., Safriet, A.J., Donley, M.S., and Zabinski, J.S., Appl. Phys. Lett. 69 (1996) p. 188.
36.Musil, J., Surf. Coat. Technol. 125 (2000) p. 322.
37.Musil, J., Zeman, P., Hruby, H., and Mayrhofer, P., Surf. Coat. Technol. 121 (1999) p. 179.
38.Musil, J., Karvankova, P., and Kasl, J., Surf. Coat. Technol. 139 (2001) p. 101.
39.Karvankova, P., Männling, H.-D., Eggs, C., and Veprřek, S., Surf. Coat. Technol. 146–147 (2001) p. 280.
40.Bartsch, K., Leonhardt, A., Langer, U., and Künanz, K., Surf. Coat. Technol. 94–95 (1–3) (1997) p. 168.
41.Martin, P.J. and Bendavid, A., Thin Solid Films 394 (2001) p. 1.
42.Martin, P.J. and Bendavid, A., Surf. Coat. Technol. 163–164 (2002) p. 245.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed