Skip to main content
×
Home

Nanoengineered thrusters for the next giant leap in space exploration

  • Paulo C. Lozano (a1), Brian L. Wardle (a2), Padraig Moloney (a3) and Suraj Rawal (a4)
Abstract
Abstract

The physics underlying operation of cold (room-temperature) ionic-liquid emitter sources for use in propulsion shows that such thrusters are advantaged relative to all other “rockets” because of the direct scaling of power with emitter array density. Nanomaterials and their integration through nano- and microfabrication can propel these charged-particle sources to the forefront and open up new applications including mass-efficient in-orbit satellite propulsion and high-thrust-density deep-space exploration. Analyses of electrostatic, fluid-dynamic, and electrochemical limits all suggest that arrays of such ionic-liquid thrusters can reach thrust densities beyond most in-space propulsion concepts, with a limit on nanoporous thruster packing density of ∼1 μm due to ionic-liquid viscous flow and electrochemistry. Nanoengineered materials and manufacturing schemes are suggested for the implementation of microfabricated and nanostructured thruster arrays.

Copyright
References
Hide All
1.Jahn R.G., Physics of Electric Propulsion (McGraw-Hill, New York, 1968).
2.Martinez-Sanchez M., Pollard J.E., J. Propul. Power 14, 688 (1998).
3.Ahedo E., Plasma Phys. Control. Fusion 53, 124037 (2011).
4.Goebel D.M., Watkins R.M., Jameson K.K., J. Propul. Power 23, 552 (2007).
5.Warner D.J., Branam R.D., Hargus W.A., J. Propul. Power 26, 130 (2010).
6.Farnell C.C., Farnell C.C., Farnell S.C., Williams J.D., “Electrostatic Analyzers with Application to Electric Propulsion Testing,” presented at the 33rd International Electric Propulsion Conference, Washington, DC, October 6–10, 2013, IEPC-2013-300.
7.Rand L.P., Williams J.D., IEEE Trans. Plasma Sci. 43, 190 (2015).
8.Ziemer J.K., Merkowitz S.M., “Microthrust Propulsion of the LISA Mission,” presented at the 40th AIAA Joint Propulsion Conference, Fort Lauderdale, FL, July 12–14, 2004.
9.Waydo S., Henry D., Campbell M., Aerospace Conf. Proc. 431, 1435-431-445 (IEEE, 2002).
10.Roco M.C., Mirkin C.A., Hersam M.C., Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook (Springer, Boston, 2011), vol. 1.
11.“Report on Technology Horizons: A Vision for Air Force Science and Technology During 2010–2030” (Report AF/ST-TR-10–01, Defense Technical Information Center, Washington, DC, 2010).
12.NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space (National Academies Press, Washington, DC, 2012).
13.Jahn R.G., Physics of Electric Propulsion (McGraw-Hill, New York, 1968).
14.Welton T., Chem. Rev. 99, 2071 (1999).
15.Taylor G., Proc. R. Soc. London, A 280, 383 (1964).
16.Lozano P., Martinez-Sanchez M., J. Colloid Interface Sci. 282, 415 (2005).
17.Lozano P.C., J. Phys. D Appl. Phys. 39, 126 (2006).
18.Velásquez-García L.F., Akinwande A.I., Martinez-Sanchez M., J. Microelectromech. Syst. 15, 1272 (2006).
19.Courtney D.G., Li H., Lozano P.C., J. Microelectromech. Syst. 22, 471 (2013).
20.Dandavino S., Ataman C., Ryan C.N., Chakraborty S., Courtney D., Stark J.P.W., Shea H., J. Micromech. Microeng. 24, 075011 (2014).
21.Lozano P., Martínez-Sánchez M., J. Colloid Interface Sci. 280, 149 (2004).
22.Spearing S., Acta Mater. 48, 179 (2000).
23.Romero-Sanz I., Bocanegra R., de la Mora J.F., Gamero-Castano M., J. Appl. Phys. 94, 3599 (2003).
24.Lozano P., Martínez-Sánchez M., Lopez-Urdiales J.M., J. Colloid Interface Sci. 276, 392 (2004).
25.Courtney D.G., Li H.Q., Lozano P., J. Phys. D Appl. Phys. 45, 485203 (2012).
26.Brikner N., Lozano P.C., Appl. Phys. Lett. 101, 193504 (2012).
27.Canonica M.D., Wardle B.L., Lozano P.C., J. Micromech. Microeng. 25, 015017 (2015).
28.Krejci D., Mier-Hicks F., Fucetola C., Hsu-Schouten A., Martel F., Lozano P., “Design and Characterization of a Scalable Ion Electrospray Propulsion System,” presented at the 34th International Electric Propulsion Conference, July 4–10, 2015, Hyogo-Kobe, Japan, IEPC-2015-149.
29.Lachman N., Xu H., Zhou Y., Ghaffari M., Lin M., Bhattacharyya D., Ugur A., Gleason K.K., Zhang Q.M., Wardle B.L., Adv. Mater. Interfaces 1, 1400076 (2014).
30.Zhou Y., Ghaffari M., Lin M., Parsons E.M., Liu Y., Wardle B.L., Zhang Q.M., Electrochim. Acta 111, 608 (2013).
31.Mackus A.J.M., Bol A.A., Kessels W.M.M., Nanoscale 6, 10941 (2014).
32.Knez M., Nielsch K., Niinistö L., Adv. Mater. 19, 3425 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 76 *
Loading metrics...

Abstract views

Total abstract views: 286 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.