Skip to main content Accessibility help
×
Home

Nanoscale studies of plasmonic hot spots using super-resolution optical imaging

  • Maggie L. Weber (a1) and Katherine A. Willets (a2)

Abstract

Plasmonic metal nanoparticles have the ability to act as nanoscale antennas for visible and near-IR (infrared) light, leading to increased electromagnetic fields at their surface. As a result, Raman scattering and/or fluorescence from nearby molecules can be enhanced by many orders of magnitude. However, imaging how these molecules interact with the enhanced fields at the surface of noble metal nanoparticles is a challenge due to the diffraction limit of light. In this article, we review super-resolution imaging of plasmonic hot spots using two all-optical readouts, surface-enhanced Raman scattering and surface-enhanced fluorescence, which are used to locate and track single or a few molecules on the surface of nanoscale-roughened metals. These super-resolution imaging techniques allow localization of the emission centroid of an emitter to better than 5 nm and allow mapping of the electromagnetic field enhancement experienced by molecules at the nanoparticle surface.

Copyright

References

Hide All
1.Schwartzberg, A.M., Zhang, J.Z., J. Phys. Chem. C 112 (28), 10323 (2008).
2.Qian, X.-M., Nie, S.M., Chem. Soc. Rev. 37, 912 (2008).
3.Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Van Duyne, R.P., Zou, S., MRS Bull. 30, 368 (2005).
4.Hutter, E., Fendler, J.H., J. Adv. Mater. 16 (19), 1685 (2004).
5.Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2006).
6.Hao, E., Schatz, G.C., J. Chem. Phys. 120 (1), 357 (2004).
7.Xu, H., Bjerned, E.J., Kall, M., Borjesson, L., Phys. Rev. Lett. 83 (21), 4357 (1999).
8.Mcmahon, J.M., Henry, A.-I., Wustholz, K.L., Natan, M.J., Freeman, R., Van Duyne, R.P., Schatz, G.C., Anal. Bioanal. Chem. 394, 1819 (2009).
9.Hao, E., Schatz, G.C., Hupp, J.T., J. Fluorescence 14 (4), 331 (2004).
10.Yang, W.-H., Schatz, G.C., Van Duyne, R.P., J. Chem. Phys. 103 (3), 869 (1995).
11.Draine, B.T., Flatau, P.J., J. Opt. Soc. Am. A 11 (4), 1491 (1994).
12.Yoshida, K.-I., Itoh, T., Tamaru, H., Biju, V., Ishikawa, M., Ozaki, Y., Phys. Rev. B 81 (11), 115406/1 (2010).
13.McMahon, J.M., Wang, Y., Sherry, L.J., Van Duyne, R.P., Marks, L.D., Gray, S.K., Schatz, G.C., J. Phys. Chem. 113 (7), 2731 (2009).
14.Oubre, C., Nordlander, P., J. Phys. Chem. B 109, 10042 (2005).
15.Lal, S., Grady, N.K., Kundu, J., Levin, C.S., Lassiter, J.B., Halas, N.J., Chem. Soc. Rev. 37, 898 (2008).
16.Fort, E., Gresillon, S., J. Phys. D: Appl. Phys. 41, 1 (2007).
17.Johansson, P., Xu, H., Kall, M., Phys. Rev. B 72 (3), 035427\1 (2005).
18.Kall, M., Xu, H., Johansson, P., J. Raman Spectrosc. 36, 510 (2005).
19.Xu, H., Wang, X.-H., Persson, M.P., Xu, H.Q., Kall, M., Johansson, P., Phys. Rev. Lett. 93, 243002/1 (2004).
20.Nie, S., Emory, S.R., Science 275, 1102 (1997).
21.Kneipp, K., Wang, Y., Dasari, R.R., Feld, M.S., Appl. Spec. 49 (6), 780 (1995).
22.Hildebrandt, P., Stockburger, M., J. Phys. Chem. 88, 5935 (1984).
23.Kneipp, H., Kneipp, J., Kneipp, K., Anal. Chem. 78 (4), 1363 (2006).
24.Kneipp, K., Wang, Y., Harald, K., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Phys. Rev. Lett. 78, 1667 (1997).
25.Le Ru, E.C., Etchegoin, P.G., Chem. Phys. Lett. 243, 63 (2006).
26.Ausman, L.K., Schatz, G.C., J. Chem. Phys. 131, 084708/1 (2009).
27.Fang, Y., Seong, N.-H., Dlott, D.D., Science 321, 388 (2008).
28.Etchegoin, P.G., Le Ru, E.C., Phys. Chem. Chem. Phys. 10, 6079 (2008).
29.Wang, Y., Eswaramoorthy, S.K., Sherry, L.J., Dieringer, J.A., Camden, J.P., Schatz, G.C., Van Duyne, R.P., Marks, L.D., Ultramicroscopy 109, 1110 (2009).
30.Weber, M.L., Willets, K.A., J. Phys. Chem. Lett. 2, 1766 (2011).
31.Stranahan, S.M., Willets, K.A., Nano Lett. 10, 3777 (2010).
32.Weber, M.L., Litz, J.P., Masiello, D.J., Willets, K.A., ACS Nano 6 (2), 1839 (2012).
33.Gordon, M.P., Ha, T., Selvin, P.R., Proc. Natl. Acad. Sci. U.S.A. 101 (17), 6462 (2004).
34.Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R., Science 300, 2061 (2003).
35.Thompson, R.E., Larson, D.R., Webb, W.W., Biophys. J. 82 (5), 2775 (2002).
36.Yildiz, A., Selvin, P.R., Acc. Chem. Res 38, 574 (2005).
37.Weiss, A., Haran, G., J. Phys. Chem. B 105, 12348 (2001).
38.Maruyama, Y., Ishikawa, M., Futamata, M., J. Phys. Chem. B 108, 673 (2004).
39.Ausman, L.K., Schatz, G.C., J. Chem. Phys. 131, 084708/1 (2009).
40.McLellan, J.M., Li, Z.-Y., Siekkinen, A.R., Xia, Y., Nano Lett. 7 (4), 1013 (2007).
41.Xu, H., Kall, M., Chem. Phys. Chem. 4 (9), 1001 (2003).
42.Wustholz, K.L., Henry, A.-I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 132, 10903 (2010).
43.Borys, N.J., Lupton, J.M., J. Phys. Chem. C 115, 13645 (2011).
44.Andersen, P.C., Jacobson, M.L., Rowlen, K.L., J. Phys. Chem. B 108, 2148 (2004).
45.Geddes, C.D., Parfenov, A., Gryczynski, I., Lakowicz, J.R., J. Phys. Chem. B 107, 9989 (2003).
46.Cang, H., Labno, A., Lu, C., Yin, X., Liu, M., Gladden, C., Liu, Y., Zhang, X., Nature 469, 385 (2011).
47.Gordon, M.P., Ha, T., Selvin, P.R., Proc. Natl. Acad. Sci. 101 (17), 6462 (2004).
48.Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F., Science, 313, 1642 (2006).
49.Cheezum, M.K., Walker, W.F., Guilford, W.H., Biophys. J. 81 (4), 2378 (2001).
50.Willets, K.A., Stranahan, S.M., Weber, M.L., J. Phys. Chem. Lett. 3, 1286 (2012).
51.Nelayah, J., Kociak, M., Stéphan, O., GarcÍa de Abajo, J.J., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L.M., Colliex, C., Nat. Phys. 3, 348 (2007).
52.Rang, M., Jones, A.C., Zhou, F., Li, Z.-Y., Wiley, B.J., Xia, Y., Raschke, M.B., Nano Lett. 8 (10), 3357 (2008).
53.Alonso-Gonzalez, P., Schnell, M., Sarriugarte, P., Sobhani, H., Wu, C., Arju, N., Khanikaev, A., Golmar, F., Albella, P., Arzubiaga, L., Casanova, F., Hueso, L.E., Nordlander, P., Shvets, G., Hillenbrand, R., Nano Lett. 11 (9), 3922 (2011).
54.Vesseur, E.J.R., de Waele, R., Kuttge, M., Polman, A., Nano Lett. 7 (9), 2843 (2007).

Keywords

Related content

Powered by UNSILO

Nanoscale studies of plasmonic hot spots using super-resolution optical imaging

  • Maggie L. Weber (a1) and Katherine A. Willets (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.