Skip to main content Accessibility help
×
Home

Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials

  • James A. Bain (a1), Jonathan A. Malen (a2), Minyoung Jeong (a3) and Turga Ganapathy (a4)

Abstract

Heat-assisted magnetic recording (HAMR) relies on careful management of heat flow at the nanoscale. This article describes the heat-transfer aspects of such a system that must be considered above and beyond standard Fourier’s Law-based heat conduction. A background on nanoscale heat transport is provided that discusses energy carriers and the role of interfaces and microstructure in nanoscale conduction. These heat-transport concepts are applied to the key components of the HAMR system—the head (principally, the near-field transducer [NFT]) and the magnetic medium. This analysis frames the central challenge of thermal engineering for a HAMR system—getting the medium hot enough while maintaining a NFT that it is cool enough to avoid degradation over time. Of particular note are discussions on the role of the interface thermal conductance in the NFT and the importance of thermal anisotropy in the medium due to its granular microstructure.

Copyright

References

Hide All
1.Slack, G.A., Tanzilli, R.A., Pohl, R.O., Vandersande, J.W., J. Phys. Chem. Solids 48, 641 (1987).
2.Kazan, M., Volz, S., J. Appl. Phys. 115, 73509 (2014).
3.Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G., Thermal Conductivity—Metallic Elements and Alloys, Thermophysical Properties of Matter—The TPRC Data Series (Thermophysical and Electronic Properties Information Analysis Center, Lafayette, IN, 1970), vol. 1.
4.Moore, A.L., Shi, L., Mater. Today 17, 163 (2014).
5.Kapitza, P.L., J. Phys. (USSR) 4, 181 (1941).
6.Kapitza, P.L., J. Phys. (USSR) 5, 59 (1941).
7.Lyeo, H.K., Cahill, D.G., Phys. Rev. B Condens. Matter 73, 144301 (2006).
8.Gundrum, B.C., Cahill, D.G., Averback, R.S., Phys. Rev. B Condens. Matter 72, 245426 (2005).
9.Stoner, R.J., Maris, H.J., Phys. Rev. B Condens. Matter 48, 16373 (1993).
10.Hopkins, P.E., Norris, P.M., Stevens, R.J., Beechem, T.E., Graham, S., J. Heat Transfer 130, 062402 (20008).
11.Duda, J.C., Yang, C.-Y.P., Foley, B.M., Cheaito, R., Medlin, D.L., Jones, R.E., Hopkin, P.E., Appl. Phys. Lett. 102, 81902 (2013).
12.Regner, K.T., Freedman, J.P., Malen, J.A., Nanoscale Microscale Thermophys. Eng. 19, 183 (2015).
13.Cahill, D.G., Watson, S.K., Pohl, R.O., Phys. Rev. B Condens. Matter 46, 6131 (1992).
14.Larkin, J.M., McGaughey, A.J.H., Phys. Rev. B Condens. Matter 89, 144303 (2014).
15.Ashcroft, N.W., Mermin, N.D., Solid State Physics (Holt, Rinehart and Winston, New York, 1976).
16.Jain, A., McGaughey, A.J.H., Phys. Rev. B Condens. Matter 93, 81206 (2016).
17.Wang, W., Cahill, D.G., Phys. Rev. Lett. 109, 175503 (2012).
18.Lin, Z., Zhigilei, L.V., Celli, V., Phys. Rev. B Condens. Matter 77, 075133 (2008).
19.Majumdar, A., Reddy, P., Appl. Phys. Lett. 84, 4768 (2004).
20.Monachon, C., Weber, L., Dames, C., Annu. Rev. Mater. Res. 46, 433 (2016).
21.Swartz, E.T., Pohl, R.O., Rev. Mod. Phys. 61, 605 (1989).
22.Duda, J.C., Beechem, T.E., Smoyer, J.L., Norris, P.M., Hopkins, P.E., J. Appl. Phys. 108, 73515 (2010).
23.Song, B., Fiorino, A., Meyhofer, E., Reddy, P., AIP Adv. 5, 53503 (2015).
24.Zhou, N., Xu, X., Hammack, A.T., Stipe, B.C., Gao, K., Scholz, W., Gage, E.C., Nanophotonics 3, 141 (2014).
25.Xu, B.X., Cen, Z.H., Goh, J.H., Li, J.M., Toh, Y.T., Zhang, J., Ye, K.D., Quan, C.G., J. Appl. Phys. 111, 07B701 (2012).
26.Blaber, M.G., Arnold, M.D., Ford, M.J., J. Phys. Condens. Matter 22, 143201 (2010).
27.Bhargava, S., Yablonovitch, E., IEEE Trans. Magn. 51, 1 (2015).
28.Freedman, J.P., Leach, J.H., Preble, E.A., Sitar, Z., Davis, R.F., Malen, J.A., Sci. Rep. 3, 2963 (2013).
29.Jeong, M., Freedman, J.P., Liang, H.J., Chow, C.-M., Sokalski, V.M., Bain, J.A., Malen, J.A., Phys. Rev. Appl. 5, 14009 (2016).
30.Duda, J.C., Smoyer, J.L., Norris, P.M., Hopkins, P.E., Appl. Phys. Lett. 95, 31912 (2009).
31.Stevens, R.J., Smith, A.N., Norris, P.M., J. Heat Transfer 127, 315 (2005).
32.English, T.S., Duda, J.C., Smoyer, J.L., Jordan, D.A., Norris, P.M., Zhigilei, L.V., Phys. Rev. B Condens. Matter 85, 35438 (2012).
33.Ji, R., Xu, B., Cen, Z., Ying, J.F., Toh, Y.T., J. Appl. Phys. 117, 17 (2015).
34.Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.-T., Erden, M.F., Proc. IEEE 96, 1810 (2008).
35.Li, Z., Chen, W., Rea, C., Blaber, M.G., Zhou, N., Zhou, H., Yin, H., IEEE Trans. Magn. 53, 9300104 (2017).
36.Jubert, P.-O., Zong, F., Grobis, M.K., IEEE Trans. Magn. 53, 1 (2017).
37.Feser, J.P., Cahill, D.G., Rev. Sci. Instrum. 83, 104901 (2012).
38.Ho, H., Sharma, A.A., Ong, W.-L., Malen, J.A., Bain, J.A., Zhu, J.-G., Appl. Phys. Lett. 103, 131907 (2013).
39.Cahill, D.G., Rev. Sci. Instrum. 75, 5119 (2004).

Keywords

Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials

  • James A. Bain (a1), Jonathan A. Malen (a2), Minyoung Jeong (a3) and Turga Ganapathy (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed