Skip to main content

Novel Methods of Nanoscale Wire Formation


In recent years, tremendous interest has been generated in the fabrication and characterization of nanoscale structures such as quantum dots and wires. For example, there is interest in the electronic, magnetic, mechanical, and chemical properties of materials with reduced dimensions. In the case of nanoscale semiconductors, quantum effects are expected to play an increasingly prominent role in the physics of nanostructures, and a new class of electronic and optoelectronic devices may be possible. In addition to new and interesting physics, the formation and characterization of nanoscale magnetic structures could result in higher-density storage capacity in hard disks and optical-recording media. Likewise, phonon confinement leads to a drastic reduction of thermal conductivity and can be used to improve the performance of thermoelectric devices.

In 1980, H. Sakaki predicted theoretically that quantum wires may have applications in high-performance transport devices, due to their sawtoothlike density of states (E1/2), where E is the electron energy. Since then, most quantum wires have been made by fabricating a gratinglike gate on top of a two-dimensional (2D) electron gas contained in a semiconductor heterojunction or in metal-oxide-semiconductor structures. By applying a negative gate voltage to the system, its structure can be changed from a 2D to a one-dimensional (1D) regime, where electron confinement is achieved by an electrostatic confining potential. It was not until recently that “physical” semiconductor quantum wires with the demonstrated 1D confinement by physical boundaries began to be fabricated.

Hide All
1.Stewart D.R., Sprinzak D., Marcus C.M., Duruoz C.I., and Harris J.S. Jr., Science 278 (1997) p. 1784.
2.Awschalom D.D. and DiVincenzo D.P., Phys. Today 48 (1995) p. 43.
3.Goldhaber-Gordon D., Montemerlo M.S., Love J.C, Opiteck G.J., and Ellenbogen J.C., in Proc. IEEE 85 (Institute of Electronic and Electrical Engineering, New York, 1997) p. 521.
4.Balandin A. and Wang K.L., Phys. Rev. B: Condens. Matter 58 (1998) p. 1544.
5.Warren A.C., Antoniadis D.A., and Smith H.I., Phys. Rev. Lett. 56 (1986) p. 1858; W. Hansen, M. Horst, J.P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 58 (1987) p. 2586.
6.Liu H.L., Biegelsen D.K., Ponce F.A., Johnson N.M., and Pease R.F.W., J. Vac. Sci. Techmol., B 11 (1993) p. 2532.
7.Nakajima Y., Takahashi Y., Horiguchi S., Iwadate K., Namatsu H., Kurihara K., and Tabe M., Appl. Phys. Lett. 65 (1994) p. 2833Liu J.L., Shi Y., Wang F., Zhang R., Han P., Mao B.H., and Zheng Y.D., J. Vac. Sci. Techmol., B 13 (1995) p. 2721.
8.Jin G., Tang Y.S., Liu J.L., and Wang K.L., Appl. Phys. Lett. 74 (17) (1999) p. 2471.
9.Dobisz E.A., Buot F.A., and Marrian C.R.K., in Nanomaterials: Synthesis, Properties and Applications, edited by Edelstein A.S. and Cammarata R.C (Institute of Physics, Bristol, 1996) p. 497.
10.Lyding J.W., Shen T.C., Hubacek J.S., Tucker J.R., and Abein G.C., Appl. Phys. Lett. 64 (1994) p. 2010.
11.Tsau L., Wang D., and Wang K.L., Appl. Phys. Lett. 64 (16) (1994) p. 2133.
12.Germann R., Forchel A., Bresch M., and Meier H.P., J. Vac. Sci. Technol., B 7 (1989) p. 1475.
13.Ko K.K., Pang S.W., Brock T., Cole M.W., and Casas L.M., J. Vac. Sci. Technol., B 12 (1994) p. 3382.
14.Jung T.M., Prokes S.M., and Kaplan R., J. Vac. Sci. Techmol., A 12 (1994) p. 1838.
15.Iijima S., Nature 354 (1991) p. 56.
16.Hamada N., Sawada S., and Oshiyama A., Phys. Rev. Lett. 68 (1992) p. 1578.
17.Tulchinsky D.A., Kelley M.H., McClelland J.J, Gupta R., and Celotta R.J., J. Vac. Sci. Techmol., A 16 (1998) p. 1817.
18.Searson P.C., Cammarata R.C., and Chien C.L., J. Electron. Mater. 24 (1995) p. 955.
19.Martin C.R., Chem. Mater. 8 (1996) p. 1739.
20.Ferre R., Ounadjela K., George J.M., Piraux L., and Dubois S., Phys. Rev. B 56 (1997) p. 14066.
21.Shingubara S., Okino O., Sayama Y., Sakaue H., and Takahagi T., Jpn. J. Appl. Phys. 36 (1997) p. 7791.
22.Zhang Z.B., Ying J.Y., and Dresselhaus M.S., J. Mater. Res. 13 (1998) p. 1745.
23.Liu J.L., Cai S.J., Jin C.L., and Wang K.L., Electrochem. Solid-State Lett. 1 (4) (1998) p. 188.
24.Ishida T., Mizutani W., Tokumoto H., Hokari H., Azehara H., and Fujihira M., Appl. Surf. Sci. 132 (1998) p. 786.
25.Liu J.F., Yang K.Z., and Lu Z.H., J. Am. Chem. Soc. 119 (1997) p. 11061.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 13th December 2017. This data will be updated every 24 hours.