Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 90
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Arroyo-de Dompablo, M. E. Krich, C. Nava-Avendaño, J. Palacín, M. R. and Bardé, F. 2016. In quest of cathode materials for Ca ion batteries: the CaMO3perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni). Phys. Chem. Chem. Phys., Vol. 18, Issue. 29, p. 19966.

    Chen, Renjie Zhao, Taolin Zhang, Xiaoxiao Li, Li and Wu, Feng 2016. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz.,

    Dixit, Mudit Kosa, Monica Lavi, Onit Srur Markovsky, Boris Aurbach, Doron and Major, Dan Thomas 2016. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2as a positive electrode material for Li-ion batteries using first principles. Phys. Chem. Chem. Phys., Vol. 18, Issue. 9, p. 6799.

    Gao, Jian Shi, Si-Qi and Li, Hong 2016. Brief overview of electrochemical potential in lithium ion batteries. Chinese Physics B, Vol. 25, Issue. 1, p. 018210.

    Jain, Anubhav Shin, Yongwoo and Persson, Kristin A. 2016. Computational predictions of energy materials using density functional theory. Nature Reviews Materials, Vol. 1, Issue. 1, p. 15004.

    Karino, Wataru 2016. Order of the transition metal layer in LiNi1/3Co1/3Mn1/3O2 and stability of the crystal structure. Ionics, Vol. 22, Issue. 6, p. 991.

    Kim, Ki Chul Liu, Tianyuan Lee, Seung Woo and Jang, Seung Soon 2016. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. Journal of the American Chemical Society, Vol. 138, Issue. 7, p. 2374.

    Kirklin, S. Saal, James E. Hegde, Vinay I. and Wolverton, C. 2016. High-throughput computational search for strengthening precipitates in alloys. Acta Materialia, Vol. 102, p. 125.

    Körbel, Sabine Marques, Miguel A. L. and Botti, Silvana 2016. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C, Vol. 4, Issue. 15, p. 3157.

    Mulholland, Gregory J. and Paradiso, Sean P. 2016. Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification. APL Materials, Vol. 4, Issue. 5, p. 053207.

    Saracibar, A. Carrasco, J. Saurel, D. Galceran, M. Acebedo, B. Anne, H. Lepoitevin, M. Rojo, T. and Casas Cabanas, M. 2016. Investigation of sodium insertion–extraction in olivine NaxFePO4(0 ≤ x ≤ 1) using first-principles calculations. Phys. Chem. Chem. Phys., Vol. 18, Issue. 18, p. 13045.

    Shi, Siqi Gao, Jian Liu, Yue Zhao, Yan Wu, Qu Ju, Wangwei Ouyang, Chuying and Xiao, Ruijuan 2016. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chinese Physics B, Vol. 25, Issue. 1, p. 018212.

    Yaghoobnejad Asl, Hooman and Choudhury, Amitava 2016. Combined Theoretical and Experimental Approach to the Discovery of Electrochemically Active Mixed Polyanionic Phosphatonitrates, AFePO4NO3(A = NH4/Li, K). Chemistry of Materials, Vol. 28, Issue. 14, p. 5029.

    Bhatt, Mahesh Datt and O'Dwyer, Colm 2015. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys., Vol. 17, Issue. 7, p. 4799.

    Cerqueira, Tiago F. T. Sarmiento-Pérez, Rafael Amsler, Maximilian Nogueira, F. Botti, Silvana and Marques, Miguel A. L. 2015. Materials Design On-the-Fly. Journal of Chemical Theory and Computation, Vol. 11, Issue. 8, p. 3955.

    Cerqueira, Tiago F. T. Lin, Sun Amsler, Maximilian Goedecker, Stefan Botti, Silvana and Marques, Miguel A. L. 2015. Identification of Novel Cu, Ag, and Au Ternary Oxides from Global Structural Prediction. Chemistry of Materials, Vol. 27, Issue. 13, p. 4562.

    Dawson, James A. and Tanaka, Isao 2015. Li Intercalation into a β-MnO2Grain Boundary. ACS Applied Materials & Interfaces, Vol. 7, Issue. 15, p. 8125.

    Fitzgerald, G. DeJoannis, J. and Meunier, M. 2015. Modeling, Characterization, and Production of Nanomaterials.

    Gautier, Romain Zhang, Xiuwen Hu, Linhua Yu, Liping Lin, Yuyuan Sunde, Tor O. L. Chon, Danbee Poeppelmeier, Kenneth R. and Zunger, Alex 2015. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nature Chemistry, Vol. 7, Issue. 4, p. 308.

    Gnanapoongothai, Thiyagarajan Murugan, Ramaswamy and Palanivel, Balan 2015. First-principle study on lithium intercalated antimonides Ag3Sb and Mg3Sb2. Ionics, Vol. 21, Issue. 5, p. 1351.


Opportunities and challenges for first-principles materials design and applications to Li battery materials


The idea of first-principles methods is to determine the properties of materials by solving the basic equations of quantum mechanics and statistical mechanics. With such an approach, one can, in principle, predict the behavior of novel materials without the need to synthesize them and create a virtual design laboratory. By showing several examples of new electrode materials that have been computationally designed, synthesized, and tested, the impact of first-principles methods in the field of Li battery electrode materials will be demonstrated. A significant advantage of computational property prediction is its scalability, which is currently being implemented into the Materials Genome Project at the Massachusetts Institute of Technology. Using a high-throughput computational environment, coupled to a database of all known inorganic materials, basic information on all known inorganic materials and a large number of novel “designed” materials is being computed. Scalability of high-throughput computing can easily be extended to reach across the complete universe of inorganic compounds, although challenges need to be overcome to further enable the impact of first-principles methods.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.M. Whittingham , Science 192, 1126 (1976).

4.G. Ceder , M.K. Aydinol , Solid State Ionics 109, 151 (1998).

5.F. Zhou , M. Cococcioni , C. Marianetti , D. Morgan , G. Ceder , Phys. Rev. B 70, 235121 (2004).

6.L. Wang , T. Maxisch , G. Ceder , Phys. Rev. B 73, 195107 (2006).

7.L. Wang , T. Maxisch , G. Ceder , Chem. Mater. 19, 543 (2007).

8.V.I. Anisimov , F. Aryasetiawan , A.I. Lichtenstein , J. Phys. Condens. Matter 9, 767 (1997).

9.A. Van der Ven , G. Ceder , Electrochem. Solid-State Lett. 3, 301 (2000).

11.D. Morgan , A. Van der Ven , G. Ceder , Electrochem. Solid-State Lett. 7, A30 (2004).

12.B. Kang , G. Ceder , Nature 458, 190 (2009).

13.S. Ping Ong , L. Wang , B. Kang , G. Ceder , Chem. Mater. 20, 1798 (2008).

14.A. Kayyar , H. Qian , J. Luo , Appl. Phys. Lett. 95, 221905 (2009).

15.S.P. Ong , A. Jain , G. Hautier , B. Kang , G. Ceder , Electrochem. Commun. 12, 427 (2010).

16.S. Kim , J. Kim , H. Gwon , K. Kang , J. Electrochem. Soc. 156, A635 (2009).

17.G. Chen , T.J. Richardson , J. Power Sources 195, 1221 (2010).

18.K. Kang , Y. Meng , J. Breger , C. Grey , G. Ceder , Science 311, 977 (2006).

19.J. Reed , G. Ceder , Chem. Rev. 104, 4513 (2004).

20.J. Reed , G. Ceder , Electrochem. Solid-State Lett. 5, A145 (2002).

22.A.K. Padhi , K.S. Nanjundaswamy , C. Masquelier , J.B. Goodenough , J. Electrochem. Soc. 144, 2581 (1997).

23.N.A. Godshall , I.D. Raistrick , R.A. Huggins , J. Electrochem. Soc. 131, 543 (1984).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *