Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 22
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fang, Xu Tseng, Ming Lun Tsai, Din Ping and Zheludev, Nikolay I. 2016. Coherent Excitation-Selective Spectroscopy of Multipole Resonances. Physical Review Applied, Vol. 5, Issue. 1,


    Anwar, Shahzad Li, Sucheng Li, Shuo Duan, Qian Lu, Weixin and Hou, Bo 2015. Topology-induced, strongly diamagnetic response of hollow structured metals at broadband microwave frequencies. Applied Physics A, Vol. 121, Issue. 3, p. 1061.


    Shelton, D. 2014. Metallic Films for Electronic, Optical and Magnetic Applications.


    Shi, Yan Tang, Wei and Liang, Chang-Hong 2014. A Minimized Invisibility Complementary Cloak With a Composite Shape. IEEE Antennas and Wireless Propagation Letters, Vol. 13, p. 1800.


    Giloan, M. and Astilean, S. 2013. Dual-band optical negative index metamaterial based on hexagonal arrays of triangular nanoholes in metal–dielectric films. Optics Communications, Vol. 296, p. 141.


    Shaltout, Amr Shalaev, Vladimir and Kildishev, Alexander 2013. Homogenization of bi-anisotropic metasurfaces. Optics Express, Vol. 21, Issue. 19, p. 21941.


    Tang, Jianwei and He, Sailing 2013. Hybrid metal-dielectric ring resonators for homogenizable optical metamaterials with strong magnetic response at short wavelengths down to the ultraviolet range. Optics Express, Vol. 21, Issue. 20, p. 23511.


    Zhao, Yongxiang Chen, Fei Shen, Qiang and Zhang, Lianmeng 2012. Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution. Physics Letters A, Vol. 376, Issue. 4, p. 252.


    Aslam, Muhammad I. and Güney, Durdu Ö. 2011. Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum. Physical Review B, Vol. 84, Issue. 19,


    Kildishev, Alexander V. Borneman, Joshua D. Ni, Xingjie Shalaev, Vladimir M. and Drachev, Vladimir P. 2011. Bianisotropic Effective Parameters of Optical Metamagnetics and Negative-Index Materials. Proceedings of the IEEE, Vol. 99, Issue. 10, p. 1691.


    Mitri, Farid G. and Sinha, Dipen N. 2011. 2011 IEEE International Ultrasonics Symposium. p. 1556.

    Zhao, Yongxiang Chen, Fei Shen, Qiang Liu, Qiwen and Zhang, Lianmeng 2011. Optimizing low loss negative index metamaterial for visible spectrum using differential evolution. Optics Express, Vol. 19, Issue. 12, p. 11605.


    Gabitov, Ildar R Kennedy, Bridget and Maimistov, Andrei I 2010. Coherent Amplification of Optical Pulses in Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, Issue. 2, p. 401.


    Goussetis, George Feresidis, Alexandros P. and Harvey, Andrew R. 2010. Experimental realisation of electromagnetic metamaterials. Journal of Modern Optics, Vol. 57, Issue. 1, p. 1.


    Ni, Xingjie Kildishev, Alexander V. and Shalaev, Vladimir M. 2010. Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation. p. 1.

    Park, W. 2010. Encyclopedia of Materials: Science and Technology.


    Simovski, C.R. and Tretyakov, S.A. 2010. On effective electromagnetic parameters of artificial nanostructured magnetic materials. Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, Issue. 4, p. 254.


    Tang, Jianwei and He, Sailing 2010. A novel structure for double negative NIMs towards UV spectrum with high FOM. Optics Express, Vol. 18, Issue. 24, p. 25256.


    Litchinitser, Natalia M. and Shalaev, Vladimir M. 2009. Metamaterials: transforming theory into reality. Journal of the Optical Society of America B, Vol. 26, Issue. 12, p. B161.


    Melik, Rohat Unal, Emre Perkgoz, Nihan Kosku Puttlitz, Christian and Demir, Hilmi Volkan 2009. Metamaterial-based wireless strain sensors. Applied Physics Letters, Vol. 95, Issue. 1, p. 011106.


    ×

Optical Metamagnetism and Negative-Index Metamaterials

Abstract
Abstract

A new class of artificially structured materials called metamaterials makes it possible to achieve electromagnetic properties that do not exist in nature. In this article, we review the recent progress made in the area of optical metamaterials, specifically artificial magnetism and negative-index metamaterials. It was predicted that nanostructured metamaterials could provide magnetic responses and negative refractive indexes at optical frequencies. To date, optical metamagnetics have been fabricated to demonstrate magnetic responses in the infrared range and across the entire visible spectrum. Metamaterials showing negative refractive indexes, also called negative-index materials (NIMs), have also been demonstrated in the infrared range and at the border with the visible spectral range. Additionally, we report the results of a sample that displays NIM behavior for red light at a wavelength of 710 nm and another sample that displays double-negative NIM behavior at 725 nm. Both observations represent the shortest wavelengths so far at which NIM behavior has been observed for light. We also discuss the fabrication challenges and the impact of fabrication limitations, specifically the effect of surface roughness of the fabricated structures, on the optical properties of the metamaterials.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.J.B. Pendry , Phys. Rev. Lett. 85, 3966 (2000).

2.V.G. Veselago , Sov. Phys. Usp. 10, 509 (1968).

3.U.K. Chettiar , A.V. Kildishev , H.K. Yuan , W.S. Cai , S.M. Xiao , V. P. Drachev , V.M. Shalaev , Opt. Lett. 32, 1671 (2007).

4.H.K. Yuan , U.K. Chettiar , W.S. Cai , A.V. Kildishev , A. Boltasseva , V.P. Drachev , V.M. Shalaev , Opt. Express 15, 1076 (2007); available at http://www.opticsinfobase.org/abstract.cfm?URI=oe-15–3–1076.

5.W.S. Cai , U.K. Chettiar , H.K. Yuan , V.C. de Silva , A.V. Kildishev , V.P. Drachev , V.M. Shalaev , Opt. Express 15, 3333 (2007); available at http://www.opticsinfobase.org/abstract:.cfm?URI=oe-15–6–3333.

6.G. Dolling , M. Wegener , C.M. Soukoulis , S. Linden , Opt. Lett. 32, 53 (2007).

8.H.J. Lezec , J.A. Dionne , H.A. Atwater , Science 316, 430 (2007).

10.P.A. Belov , C.R. Simovski , Phys. Rev. E 72, 036618 (2005).

11.A. Ourir , A. de Lustrac , J.M. Lourtioz , Appl. Phys. Lett. 88, 084103 (2006).

12.V.A. Fedotov , P.L. Mladyonov , S.L. Prosvirnin , N.I. Zheludev , Phys. Rev. E 72, 056613 (2005).

13.J.B. Pendry , D. Schurig , D.R. Smith , Science 312, 1780 (2006).

14.A.N. Lagarkov , V.N. Semenenko , V.A. Chistyaev , D.E. Ryabov , S.A. Tretyakov , C.R. Simovski , Electromagnetics 17, 213 (1997).

15.J.B. Pendry , A.J. Holden , D.J. Robbins , W.J. Stewart , IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).

16.A.N. Lagarkov , A.K. Sarychev , Phys. Rev. B 53, 6318 (1996).

17.V.A. Podolskiy , A.K. Sarychev , V.M. Shalaev , J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).

18.V.A. Podolskiy , A.K. Sarychev , V.M. Shalaev , Opt. Express 11, 735 (2003); available at http://www.opticsexpress.org/abstract:.cfm?uri=oe-11–7–735.

19.D.R. Smith , W.J. Padilla , D.C. Vier , S.C. Nemat-Nasser , S. Schultz , Phys. Rev. Lett. 84, 4184 (2000).

20.C. Enkrich , M. Wegener , S. Linden , S. Burger , L. Zschiedrich , F. Schmidt , J.F. Zhou , T. Koschny , C.M. Soukoulis , Phys. Rev. Lett. 95, 203901 (2005).

21.M.W. Klein , C. Enkrich , M. Wegener , C.M. Soukoulis , S. Linden , Opt. Lett. 31, 1259 (2006).

22.V. P. Drachev , U.K. Chettiar , A.V. Kildishev , H.K. Yuan , W.S. Cai , V.M. Shalaev , Opt. Express 16, 1186 (2008). http://www.opticsinfobase.org/abstract:.cfm?URI=oe-16–2–1186

23.V.M. Shalaev , W. Cai , U.K. Chettiar , H.K. Yuan , A.K. Sarychev , V.P. Drachev , A.V. Kildishev , Opt. Lett. 30, 3356 (2005).

24.S. Zhang , W.J. Fan , N.C. Panoiu , K.J. Malloy , R.M. Osgood , S.R.J. Brueck , Phys. Rev. Lett. 95, 137404 (2005).

25.G. Dolling , C. Enkrich , M. Wegener , C.M. Soukoulis , S. Linden , Opt. Lett. 31, 1800 (2006).

26.S. Zhang , W.J. Fan , K.J. Malloy , S.R.J. Brueck , N.C. Panoiu , R.O. Osgood , J. Opt. Soc. Am. B 23, 434 (2006).

27.P.B. Johnson , R.W. Christy , Phys. Rev. B 6, 4370 (1972).

28.T.A. Klar , A.V. Kildishev , V. P. Drachev , V.M. Shalaev , IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×