Skip to main content Accessibility help
×
Home

Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry

  • Jiawei Huang (a1), Wenxiao Guo (a2), Yue Hu (a3) and Wei David Wei (a4)

Abstract

Plasmonic nanostructures possess broadly tunable optical properties with catalytically active surfaces. They offer new opportunities for achieving efficient solar-to-chemical energy conversion. Plasmonic metal–semiconductor heterostructures have attracted heightened interest due to their capability of generating energetic hot electrons that can be collected to facilitate chemical reactions. In this article, we present a detailed survey of recent examples of plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry, including plasmonic metal–oxide, plasmonic metal–two-dimensional materials, and plasmonic metal–metal–organic frameworks. We conclude with a discussion on the remaining challenges in the field and an outlook regarding future opportunities for designing high-performance plasmonic metal–semiconductor heterostructures for photochemistry.

Copyright

References

Hide All
1.Reference Solar Spectral Irradiance: Air Mass 1.5,” http://rredc.Nrel.Gov/solar/spectra/am1.5 (accessed October 23, 2017).
2.Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J.R., Wei, W.D., Chem. Rev. 118, 2927 (2018).
3.Brongersma, M.L., Halas, N.J., Nordlander, P., Nat. Nanotechnol. 10, 25 (2015).
4.Linic, S., Aslam, U., Boerigter, C., Morabito, M., Nat. Mater. 14, 567 (2015).
5.Aslam, U., Rao, V.G., Chavez, S., Linic, S., Nat. Catal. 1, 656 (2018).
6.Kale, M.J., Avanesian, T., Christopher, P., ACS Catal . 4, 116 (2014).
7.Giannini, V., Fernández-Domínguez, A.I., Heck, S.C., Maier, S.A., Chem. Rev. 111, 3888 (2011).
8.Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2007).
9.Gieseking, R.L., Ratner, M.A., Schatz, G.C., ACS Symp. Ser. 1245 (1), 1 (2016).
10.Hammer, B., Norskov, J.K., Nature 376, 238 (1995).
11.Duchene, J.S., Sweeny, B.C., Johnston-Peck, A.C., Su, D., Stach, E.A., Wei, W.D., Angew. Chem. Int. Ed. Engl. 53, 7887 (2014).
12.Qian, K., Sweeny, B.C., Johnston-Peck, A.C., Niu, W., Graham, J.O., Duchene, J.S., Qiu, J., Wang, Y.C., Engelhard, M.H., Su, D., Stach, E.A., Wei, W.D., J. Am. Chem. Soc. 136, 9842 (2014).
13.Yang, J., Guo, Y., Jiang, R., Qin, F., Zhang, H., Lu, W., Wang, J., Yu, J.C., J. Am. Chem. Soc. 140, 8497 (2018).
14.Li, C., Wang, T., Zhao, Z.J., Yang, W., Li, J.F., Li, A., Yang, Z., Ozin, G.A., Gong, J., Angew. Chem. Int. Ed. Engl. 57, 5278 (2018).
15.Priebe, J.B., Karnahl, M., Junge, H., Beller, M., Hollmann, D., Brückner, A., Angew. Chem. Int. Ed. Engl. 52, 11420 (2013).
16.Hou, W., Hung, W.H., Pavaskar, P., Goeppert, A., Aykol, M., Cronin, S.B., ACS Catal . 1, 929 (2011).
17.Collado, L., Reynal, A., Coronado, J.M., Serrano, D.P., Durrant, J.R., De la Peña O’Shea, V.A., Appl. Catal. B 178, 177 (2015).
18.Tsukamoto, D., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., Hirai, T., J. Am. Chem. Soc. 134, 6309 (2012).
19.Tanaka, A., Nishino, Y., Sakaguchi, S., Yoshikawa, T., Imamura, K., Hashimoto, K., Kominami, H., Chem. Commun. 49, 2551 (2013).
20.Zhang, Q., Jin, X., Xu, Z., Zhang, J., Rendón, U.F., Razzari, L., Chaker, M., Ma, D., J. Phys. Chem. Lett. 9, 5317 (2018).
21.Patra, B.K., Guria, A.K., Dutta, A., Shit, A., Pradhan, N., Chem. Mater. 26, 7194 (2014).
22.Liu, L., Ouyang, S., Ye, J., Angew. Chem. Int. Ed. Engl. 52, 6689 (2013).
23.Cai, X., Zhu, M., Elbanna, O.A., Fujitsuka, M., Kim, S., Mao, L., Zhang, J., Majima, T., ACS Catal . 8, 122 (2018).
24.Wu, B., Liu, D., Mubeen, S., Chuong, T.T., Moskovits, M., Stucky, G.D., J. Am. Chem. Soc. 138, 1114 (2016).
25.Jia, H., Du, A., Zhang, H., Yang, J., Jiang, R., Wang, J., Zhang, C.Y., J. Am. Chem. Soc. 141, 5083 (2019).
26.Jiang, W., Bai, S., Wang, L., Wang, X., Yang, L., Li, Y., Liu, D., Wang, X., Li, Z., Jiang, J., Xiong, Y., Small 12, 1640 (2016).
27.Sousa-Castillo, A., Comesaña-Hermo, M., Rodríguez-González, B., Pérez-Lorenzo, M., Wang, Z., Kong, X.T., Govorov, A.O., Correa-Duarte, M.A., J. Phys. Chem. C 120, 11690 (2016).
28.Robatjazi, H., Zhao, H., Swearer, D.F., Hogan, N.J., Zhou, L., Alabastri, A., McClain, M.J., Nordlander, P., Halas, N.J., Nat. Commun. 8, (2017).
29.He, S., Huang, J., Goodsell, J.L., Angerhofer, A., Wei, W.D., Angew. Chem. Int. Ed. Engl. 58, 6038 (2019).
30.Zou, J., Si, Z., Cao, Y., Ran, R., Wu, X., Weng, D., J. Phys. Chem. C 120, 29116 (2016).
31.Liu, E., Qi, L., Bian, J., Chen, Y., Hu, X., Fan, J., Liu, H., Zhu, C., Wang, Q., Mater. Res. Bull. 68, 203 (2015).
32.Hong, J.W., Wi, D.H., Lee, S.U., Han, S.W., J. Am. Chem. Soc. 138, 15766 (2016).
33.Tanaka, A., Sakaguchi, S., Hashimoto, K., Kominami, H., ACS Catal . 3, 79 (2013).
34.Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., Majima, T., J. Am. Chem. Soc. 136, 458 (2014).
35.Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8, 247 (2013).
36.Zhang, P., Fujitsuka, M., Majima, T., Nanoscale 9, 1520 (2017).
37.Shi, Y., Wang, J., Wang, C., Zhai, T.T., Bao, W.J., Xu, J.J., Xia, X.H., Chen, H.Y., J. Am. Chem. Soc. 137, 7365 (2015).
38.Shang, B., Cui, X., Jiao, L., Qi, K., Wang, Y., Fan, J., Yue, Y., Wang, H., Bao, Q., Fan, X., Wei, S., Song, W., Cheng, Z., Guo, S., Zheng, W., Nano Lett . 19, 2758 (2019).
39.Lou, Z., Fujitsuka, M., Majima, T., J. Phys. Chem. Lett. 8, 844 (2017).
40.Zhang, L., Ding, N., Lou, L., Iwasaki, K., Wu, H., Luo, Y., Li, D., Nakata, K., Fujishima, A., Meng, Q., Adv. Funct. Mater. 29, 1 (2019).
41.Xue, J., Ma, S., Zhou, Y., Zhang, Z., He, M., ACS Appl. Mater. Interfaces 7, 9630 (2015).
42.Jin, H., Guo, C., Liu, X., Liu, J., Vasileff, A., Jiao, Y., Zheng, Y., Qiao, S.Z., Chem. Rev. 118, 6337 (2018).
43.Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., Chai, S.P., Chem. Rev. 116, 7159 (2016).
44.Liu, C., Kong, D., Hsu, P.C., Yuan, H., Lee, H.W., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., Maraccini, P.A., Parker, K.M., Boehm, A.B., Cui, Y., Nat. Nanotechnol. 11, 1098 (2016).
45.Voiry, D., Fullon, R., Yang, J., de Carvalho Castro e Silva, C., Kappera, R., Bozkurt, I., Kaplan, D., Lagos, M.J., Batson, P.E., Gupta, G., Mohite, A.D., Dong, L., Er, D., Shenoy, V.B., Asefa, T., Chhowalla, M., Nat. Mater. 15, 1003 (2016).
46.Zhang, J., Wu, J., Guo, H., Chen, W., Yuan, J., Martinez, U., Gupta, G., Mohite, A., Ajayan, P.M., Lou, J., Adv. Mater. 29, 1 (2017).
47.Khan, M.E., Khan, M.M., Cho, M.H., Nanoscale 10, 9427 (2018).
48.Han, Q., Chen, N., Zhang, J., Qu, L., Mater. Horiz. 4, 832 (2017).
49.Zhou, H.C., Long, J.R., Yaghi, O.M., Chem. Rev. 112, 673 (2012).
50.Corma, A., Garcia, H., Llabrés i Xamena, F.X., Chem. Rev. 110, 4606 (2010).
51.Zhu, L., Liu, X.Q., Jiang, H.L., Sun, L.B., Chem. Rev. 117, 8129 (2017).
52.Xiao, J.D., Han, L., Luo, J., Yu, S.H., Jiang, H.L., Angew. Chem. Int. Ed. Engl. 57, 1103 (2018).
53.Jiang, H.-L., Wang, S.-S., Jiao, L., Qian, Y., Hu, W.-C., Xu, G.-Y., Wang, C., Angew. Chem. Int. Ed. Engl. 58, 1 (2019).
54.Robatjazi, H., Weinberg, D., Swearer, D.F., Jacobson, C., Zhang, M., Tian, S., Zhou, L., Nordlander, P., Halas, N.J., Sci. Adv. 5, 5340 (2019).
55.Huang, X., Li, H., Zhang, C., Tan, S., Chen, Z., Chen, L., Lu, Z., Wang, X., Xiao, M., Nat. Commun. 10, 1 (2019).
56.Furube, A., Du, L., Hara, K., Katoh, R., Tachiya, M., J. Am. Chem. Soc. 129, 14852 (2007).
57.Manser, J.S., Christians, J.A., Kamat, P.V., Chem. Rev. 116, 12956 (2016).
58.Boyd, C.C., Cheacharoen, R., Leijtens, T., McGehee, M.D., Chem. Rev. 119, 3418 (2019).
59.Wang, S., Gao, Y., Miao, S., Liu, T., Mu, L., Li, R., Fan, F., Li, C., J. Am. Chem. Soc. 139, 11771 (2017).
60.Duchene, J.S., Tagliabue, G., Welch, A.J., Cheng, W.H., Atwater, H.A., Nano Lett . 18, 2545 (2018).
61.Hung, S.F., Xiao, F.X., Hsu, Y.Y., Suen, N.T., Bin Yang, H., Chen, H.M., Liu, B., Adv. Energy Mater. 6, 1 (2016).

Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry

  • Jiawei Huang (a1), Wenxiao Guo (a2), Yue Hu (a3) and Wei David Wei (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed