Skip to main content
    • Aa
    • Aa
  • Access
  • Cited by 20
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Chen, Ping Akiba, Etsuo Orimo, Shin-ichi Zuettel, Andreas and Schlapbach, Louis 2016. Hydrogen Science and Engineering : Materials, Processes, Systems and Technology.

    Chiu, Chun and Yang, Ai-Min 2016. High-temperature hydrogen cycling properties of magnesium-based composites. Materials Letters, Vol. 169, p. 144.

    Gajdics, Marcell Calizzi, Marco Pasquini, Luca Schafler, Erhard and Révész, Ádám 2016. Characterization of a nanocrystalline Mg–Ni alloy processed by high-pressure torsion during hydrogenation and dehydrogenation. International Journal of Hydrogen Energy, Vol. 41, Issue. 23, p. 9803.

    Liu, Yongfeng Yang, Yaxiong Gao, Mingxia and Pan, Hongge 2016. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications. The Chemical Record, Vol. 16, Issue. 1, p. 189.

    Ngene, Peter Verkuijlen, Margriet H.W. Barre, Charlotte Kentgens, Arno P.M. and de Jongh, Petra E. 2016. Reversible Li-insertion in nanoscaffolds: A promising strategy to alter the hydrogen sorption properties of Li-based complex hydrides. Nano Energy, Vol. 22, p. 169.

    Westman, Matthew Chun, Jaehun Choi, Young Joon and Rönnebro, Ewa C. E. 2016. Materials Engineering and Scale-up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications. Energy & Fuels, Vol. 30, Issue. 1, p. 560.

    Choi, Young Joon Westman, Matthew Karkamkar, Abhi Chun, Jaehun and Rönnebro, Ewa C. E. 2015. Synthesis and Engineering Materials Properties of Fluid-Phase Chemical Hydrogen Storage Materials for Automotive Applications. Energy & Fuels, Vol. 29, Issue. 10, p. 6695.

    Mehranfar, A. Izadyar, M. and Esmaeili, A.A. 2015. Hydrogen storage by N-ethylcarbazol as a new liquid organic hydrogen carrier: A DFT study on the mechanism. International Journal of Hydrogen Energy, Vol. 40, Issue. 17, p. 5797.

    Rönnebro, Ewa Whyatt, Greg Powell, Michael Westman, Matthew Zheng, Feng and Fang, Zhigang 2015. Metal Hydrides for High-Temperature Power Generation. Energies, Vol. 8, Issue. 8, p. 8406.

    Xia, Guanglin Tan, Yingbin Chen, Xiaowei Sun, Dalin Guo, Zaiping Liu, Huakun Ouyang, Liuzhang Zhu, Min and Yu, Xuebin 2015. Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene. Advanced Materials, Vol. 27, Issue. 39, p. 5981.

    Zhou, Chengshang Fang, Zhigang Zak and Bowman, Robert C. 2015. Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part I: Kinetic Analysis. The Journal of Physical Chemistry C, Vol. 119, Issue. 39, p. 22261.

    Bishop, S.R. Marrocchelli, D. Chatzichristodoulou, C. Perry, N.H. Mogensen, M.B. Tuller, H.L. and Wachsman, E.D. 2014. Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices. Annual Review of Materials Research, Vol. 44, Issue. 1, p. 205.

    Corgnale, Claudio Hardy, Bruce Motyka, Theodore Zidan, Ragaiy Teprovich, Joseph and Peters, Brent 2014. Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants. Renewable and Sustainable Energy Reviews, Vol. 38, p. 821.

    Ngene, Peter Radeva, Tsveta Slaman, Martin Westerwaal, Ruud J. Schreuders, Herman and Dam, Bernard 2014. Seeing Hydrogen in Colors: Low-Cost and Highly Sensitive Eye Readable Hydrogen Detectors. Advanced Functional Materials, Vol. 24, Issue. 16, p. 2374.

    Révész, Ádám Gajdics, Marcell Varga, Lajos K. Krállics, György Péter, László and Spassov, Tony 2014. Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. International Journal of Hydrogen Energy, Vol. 39, Issue. 18, p. 9911.

    Saitoh, Hiroyuki Kato, Seiichi and Katagiri, Masahiko 2014. Hydrogenation of Anodized Aluminum and Crystal Growth of Formed Hydride at High Pressure and High Temperature. MATERIALS TRANSACTIONS, Vol. 55, Issue. 8, p. 1114.

    Saitoh, Hiroyuki Takagi, Shigeyuki Matsuo, Motoaki Iijima, Yuki Endo, Naruki Aoki, Katsutoshi and Orimo, Shin-ichi 2014. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density. APL Materials, Vol. 2, Issue. 7, p. 076103.

    Wang, L. Young, K. Nei, J. Pawlik, D. and Ng, K.Y.S. 2014. Hydrogenation of AB5 and AB2 metal hydride alloys studied by in situ X-ray diffraction. Journal of Alloys and Compounds, Vol. 616, p. 300.

    Yang, Tai Zhai, Tingting Yuan, Zeming Bu, Wengang Xu, Sheng and Zhang, Yanghuan 2014. Hydrogen storage properties of LaMgNi3.6M0.4 (M=Ni, Co, Mn, Cu, Al) alloys. Journal of Alloys and Compounds, Vol. 617, p. 29.

    Saitoh, Hiroyuki Takagi, Shigeyuki Endo, Naruki Machida, Akihiko Aoki, Katsutoshi Orimo, Shin-ichi and Katayama, Yoshinori 2013. Synthesis and formation process of Al2CuHx: A new class of interstitial aluminum-based alloy hydride. APL Materials, Vol. 1, Issue. 3, p. 032113.


Recent advances in metal hydrides for clean energy applications

  • Ewa C.E. Rönnebro (a1) and Eric H. Majzoub (a2)
  • DOI:
  • Published online: 07 June 2013

Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin, we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent advances in metal hydrides for clean energy applications
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Recent advances in metal hydrides for clean energy applications
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Recent advances in metal hydrides for clean energy applications
      Available formats
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. McWhorter , C. Read , G. Ordaz , N. Stetson , Curr. Opin. Solid State Mater. Sci. 15, 29 (2011).

E.C.E. Rönnebro , Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications, PNNL-21473 (June 2012);

L. Schlapbach , A. Zuttel , P. Gronig , O. Gronig , P. Aebi , Appl. Phys. A 72, 245 (2001).

A. Remhof , A. Zuttel , ChemPhysChem 9, 2440 (2008).

L. Schlapbach , A. Zuttel , Nature 414, 353 (2001).

L. Schlapbach (guest editor), MRS Bull. 27, 9 (2002).

X. Gonze , J.-M. Beuken , R. Caracas , F. Detraux , M. Fuchs , G.-M. Rignanese , L. Sindic , M. Verstraete , G. Zerah , F. Jollet , M. Torrent , A. Roy , M. Mikami , Ph. Ghosez , J.-Y. Raty , D.C. Allan , Comp. Mater. Sci. 25, 478 (2002).

G. Kresse , J. Hafner , Phys. Rev. B 47, 558 (1993).

G. Kresse , J. Hafner , Phys. Rev. B 49,14251 (1994).

G. Kresse , J. Furthmüller , Comp. Mat. Sci. 6, 15 (1996).

G. Kresse , J. Furthmüller , Phys. Rev. B 54, 11169 (1996).

E.H. Majzoub , E.C.E. Rönnebro , Mater. Sci. Eng., R 73, 15 (2012).

F.E. Pinkerton , M.S. Meyer , J. Phys. Chem. C 113, 11172 (2009).

L. Seballos , J.Z. Zhang , E. Rönnebro , J.L. Herberg , E.H. Majzoub , J. Alloys Compd. 476, 446 (2008).

D.S. Sholl , J.A. Steckel , Density Functional Theory: A Practical Introduction (Wiley-Interscience, NY, 2009).

H.R. Hoekstra , J.J. Katz , J. Am. Chem Soc. 71, 2488 (1949).

A. Belsky , M. Hellenbrandt , V.L. Karen , P. Luksch , Acta Crystallogr., Sect. B: Struct. Sci. 58, 364 (2002).

E.H. Majzoub , V. Ozolins , Phys. Rev. B 77, 104115 (2008).

E.H. Majzoub , E. Rönnebro , J. Phys. Chem. C 113, 3352 (2009).

V. Ozolins , E.H. Majzoub , C. Wolverton , Phys. Rev. Lett. 100, 135501 (2008).

B. Dam , R. Gremaud , C. Broedersz , R. Griessen , Scripta Materialia 56, 853 (2007).

A. Zaluska , L. Zaluski , J.O. Strom-Olson , J. Alloys Compd. 298, 125 (2000).

A.F. Gross , J.J. Vajo , S.L. Van Atta , G.L. Olson , J. Phys. Chem. C 112, 5651 (2008).

Y. Meng , D. Gu , F. Zhang , Y. Shi , L. Cheng , D. Feng , Z. Wu , Z. Chen , Y. Wan , A. Stein , D. Zhao , Chem. Mater. 18, 4447 (2006).

X. Liu , C. Jost , D. Peaslee , T. Baumann , E.H. Majzoub , Chem. Mater. 23, 1331 (2011).

W. Lohstroh , A. Roth , H. Hahn , M. Fichtner , ChemPhysChem 11, 789 (2010).

J. Gao , P. Adelhelm , M.H.W. Verkuijlen , C. Rongeat , M. Herrich , P. Jan M. van Bentum , O. Gutfleisch , A.P.M. Kentgens , K.P. de Jong , P.E. de Jongh , J. Phys. Chem. C 114, 4675 (2010).

E.H. Majzoub , F. Zhou , V. Ozolins , J. Phys. Chem. C 115, 2636 (2011).

T. Mueller , G. Ceder , ACS Nano 4, 5647 (2010).

J.L.C. Roswell , O.M. Yaghi , Microporous Mesoporous Mater. 73, 3 (2004).

R.K. Bhakta , S. Maharrey , V. Stavila , A. Highley , E.H. Majzoub , M.D. Allendorf , Phys. Chem. Chem. Phys. 14, 8160 (2012).

V. Stavila , R.K. Bhakta , T.M. Alam , E.H. Majzoub , M.D. Allendorf , ACS Nano 6, 9807 (2012).

H. Dong , Y. Kiros , D. Noréus , Int. J. Hydrogen Energy 35, 4336 (2010).

Y. Oumellal , A. Rougier , G.A. Nazri , J.-M. Tarascon , L. Aymard , Nat. Mater. 7, 916 (2008).

R. Mohtadi , M. Matsui , T.S. Arthur , S.-J. Hwang , Angew. Chem. Int. Ed. 51, 9780 (2012).

M. Felderhoff , B. Bogdanovic , Int. J. Mol. Sci. 10, 325 (2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *