Skip to main content
×
Home
    • Aa
    • Aa

The second revolution in atom probe tomography

  • Thomas F. Kelly (a1) and David J. Larson (a2)
Abstract
Abstract

There has been explosive growth in the performance and consequential adoption of atom probe tomography in the past decade, which was fueled by the development of the commercial local-electrode atom probe (LEAP) and technologies for specimen preparation. The LEAP introduced to atom probes orders-of-magnitude increases in data collection rates and field of view while improving mass resolution and greatly improving ease of use. These developments constitute the second revolution in the field since the invention of the atom probe in 1967 and atom probe tomography in 1973: the invention of the three-dimensional atom probe was the first revolution. This article seeks to put this second revolution into historical perspective by recounting the essential developments that led to this point. In particular, the role of Erwin Müller, the inventor of the atom probe and related instruments, is highlighted. From the invention of the field emission electron microscope to the field ion microscope to the atom probe and beyond, he created a field of microscopy that is thriving today. Next, the state of the art in atom probe instrumentation is illustrated with a current application. Finally, a brief look toward future developments is provided, which may include superconducting detectors and integration of atom probes with transmission electron microscopes.

Copyright
References
Hide All
1.Müller E.W., Panitz J.A., McLane S.B., Rev. Sci. Instrum. 39, 83 (1968).
2.Panitz J.A., Rev. Sci. Instrum. 44, 1034 (1973).
3.Cerezo A., Godfrey T.J., Smith G.D.W., Rev. Sci. Instrum. 59, 862 (1988).
4.Kelly T.F., Camus P.P., Larson D.J., Holzman L.M., Bajikar S.S., Ultramicroscopy 62, 29 (1996).
5.Nishikawa O., Kimoto M., Appl. Surf. Sci. 76/77, 424 (1994).
6.Larson D.J., Foord D.T., Petford-Long A.K., Liew H., Blamire M.G., Cerezo A., Smith G.D.W., Ultramicroscopy 79, 287 (1999).
7.Bostel A., Blavette D., Menand A., Sarrau A., J. Phys., Colloque C8, Suppl. 50 (11), 501 (1989).
8.Thomson J.J., Philos. Mag. 44, 293 (1897).
9.Rutherford E., Philos. Mag. 6(21), 669 (May 1911).
10.Bohr N., Philos. Mag. 26, 1 (1913).
11.Bragg W.L., Proc. Cambridge Philos. Soc. 17, 43 (1913).
12.Fowler R.H., Nordheim L.W., Proc. R. Soc. London, Ser. A 119, 173 (1928).
13.Müller E.W., Zh. Tekh. Fiz. 17, 412 (1936).
14.Müller E.W., Z. Phys. 120, 270 (1943).
15.Müller E.W., Z. Phys. 31, 136 (1951).
16.Melmed J., Appl. Surf. Sci. 94/95, 17 (1996).
17.Müller E.W., Z. Naturforsch. 11a, 88 (1956).
18.Müller E.W., J. Appl. Phys. 27, 474 (1956).
19.Barofsky D.F., Müller E.W., Surf. Sci. 10, 177 (1968).
20.Panitz J.A., Microsc. Microanal. 4 (S2), 74 (1998).
21.Poschenrieder W.P., Int. J. Mass Spectrom. Ion Phys. 9, 357 (1972).
22.Mamyrin B.A., Karataev V.I., Shmikk D.V., Zagulin V.A., Sov. Phys. JETP 3, 45 (1973).
23.Young R., Ward J., Scire F., Rev. Sci. Instrum. 43, 999 (1972).
24.Binnig G., Rohrer H., Appl. Phys. Lett. 40, 178 (1982).
25.Miller M.K., presentation at Microbeam Analysis Society Annual Meeting, Albuquerque, NM (1986).
26.Miller M.K., Atom Probe Tomography Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000), p. 12.
27.Kelly T.F., Mancini D.C., McCarthy J.J., Zreiba N.A., Surf. Sci. 246, 396 (1991).
28.Kelly T.F., Zreiba N.A., Howell B.D., Bradley F.J., Surf. Sci. 246, 377 (1991).
29.Larson D.J., Camus P.P., Kelly T.F., Appl. Surf. Sci. 67, 473 (1993).
30.Nishikawa O., Kimoto M., Appl. Surf. Sci. 76, 424 (1994).
31.Spindt C.A., Brodie I., Humphrey L., Westerberg E.R., J. Appl. Phys. 47, 5248 (1976).
32.Kelly T.F., Camus P.P., Larson D.J., Holzman L.M., Bajikar S.S., Ultramicroscopy 62, 29 (1996).
33.Kelly T.F., Camus P.P., Larson D.J., Holzman L.M., Mater. Res. Soc. Symp. Proc. 332, 587 (1994).
34.Waugh A.R., Payne S., Worrall G.M., Smith G.D.W., J. Physique 43, 207 (1984).
35.Alexander K.B., Angelini P., Miller M.K., J. Physique 50, 549 (1989).
36.Kelly T.F., Martens R.L., Goodman S.L., U.S. patent 6,576,900 (2003).
37.Miller M.K., Russell K.F., Thompson G.B., Ultramicroscopy 102, 287 (2005).
38.Miller M.K., Microsc. Microanal. 11 (S2), 808 (2005).
39.Thompson K., Lawrence D., Larson D.J., Olson J.D., Kelly T.F., Gorman B., Ultramicroscopy 107(2–3), 131 (2006).
40.Larson D.J., Lawrence D., Lefebvre W., Olson D., Prosa T.J., Reinhard D.A., Ulfig R.M., Clifton P.H., Bunton J.H., Lenz D., Renaud L., Martin I., Kelly T.F., in Microscopy of Semiconducting Materials, Walther T., Midgley P.A., Cullis P.A. Eds., J. Physics: Institute of Physics Conference Series 326, 012030 (2011).
41.Mardinly J., in Microscopy of Semiconducting Materials, Cullis A.G., Midgley P.A., Eds. (Springer, Dordrecht, 2007), p. 361.
42.Kellogg G.L., Tsong T.T., J. Appl. Phys. 51, 1184 (1980).
43.Liu J., Wu C.-W., Tsong T.T., Surf. Sci. 246, 157 (1991).
44.Miller M.K., Kelly T.F., Microsc. Microanal. 16 (S2), 1856 (2010).
45.Kelly T.F., Miller M.K., Rajan K., Ringer S.P., Borisevich A.Y., Dellby N., Krivanek O. L., Microsc. Microanal. 17 (S2), 708 (2011).
46.Krivanek O.L., Dellby N., Lupini A.R., Ultramicroscopy 78, 1 (1999).
47.Petersen T.C., Ringer S.P., J. Appl. Phys. 105, 103518 (2009).
48.Petersen T.C., Ringer S.P., Comp. Phys. Comm. 181, 676 (2010).
49.Irwin K.D., Sci. Am. 295 (5), 86 (2006).
50.Kelly T.F., Microsc. Microanal. 17, 1 (2011).
51.Kelly T.F., Miller M.K., Rajan K., Ringer S.P., Micros. Today, March 2012.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 210 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.