Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 73
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Hu, Chuntian Yen, Andrew Joshi, Nikhil and Hartman, Ryan L. 2016. Packed-bed microreactors for understanding of the dissolution kinetics and mechanisms of asphaltenes in xylenes. Chemical Engineering Science, Vol. 140, p. 144.

    Hu, Chuntian Garcia, Nicole C. Xu, Rongzuo Cao, Tran Yen, Andrew Garner, Susan A. Macias, Jose M. Joshi, Nikhil and Hartman, Ryan L. 2016. Interfacial Properties of Asphaltenes at the Heptol–Brine Interface. Energy & Fuels, Vol. 30, Issue. 1, p. 80.

    Beuvier, Thomas Panduro, Elvia Anabela Chavez Kwaśniewski, Paweł Marre, Samuel Lecoutre, Carole Garrabos, Yves Aymonier, Cyril Calvignac, Brice and Gibaud, Alain 2015. Implementation of in situ SAXS/WAXS characterization into silicon/glass microreactors. Lab Chip, Vol. 15, Issue. 9, p. 2002.

    Cao, Y Bontrager-Singer, J and Zhu, L 2015. A 3D microfluidic device fabrication method using thermopress bonding with multiple layers of polystyrene film. Journal of Micromechanics and Microengineering, Vol. 25, Issue. 6, p. 065005.

    Chen, Tao Pan, An Li, Cunxia Si, Jinhai and Hou, Xun 2015. Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching. Applied Surface Science, Vol. 325, p. 145.

    Fagaschewski, Janosch Sellin, Daniel Wiedenhöfer, Charles Bohne, Sven Trieu, Hoc K. and Hilterhaus, Lutz 2015. Spatially resolved in situ determination of reaction progress using microfluidic systems and FT-IR spectroscopy as a tool for biocatalytic process development. Bioprocess and Biosystems Engineering, Vol. 38, Issue. 7, p. 1399.

    Li, Yanna Chen, Tao Pan, An Li, Cunxia and Tang, Litie 2015. Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching. Journal of Micromechanics and Microengineering, Vol. 25, Issue. 11, p. 115001.

    Newby, Pascal 2015. Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Volume Two.

    Pekarek, Jan Vrba, Radimir Prasek, Jan Jasek, Ondrej Majzlikova, Petra Pekarkova, Jana and Zajickova, Lenka 2015. MEMS Carbon Nanotubes Field Emission Pressure Sensor With Simplified Design: Performance and Field Emission Properties Study. IEEE Sensors Journal, Vol. 15, Issue. 3, p. 1430.

    Zhang, Lei Wang, Wei Ju, Xiao-Jie Xie, Rui Liu, Zhuang and Chu, Liang-Yin 2015. Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv., Vol. 5, Issue. 8, p. 5638.

    Goyal, Sachit Desai, Amit V. Lewis, Robert W. Ranganathan, David R. Li, Hairong Zeng, Dexing Reichert, David E. and Kenis, Paul J.A. 2014. Thiolene and SIFEL-based microfluidic platforms for liquid–liquid extraction. Sensors and Actuators B: Chemical, Vol. 190, p. 634.

    Hu, Chuntian and Hartman, Ryan L. 2014. High-throughput packed-bed microreactors with in-line analytics for the discovery of asphaltene deposition mechanisms. AIChE Journal, Vol. 60, Issue. 10, p. 3534.

    Kim, Jin-Oh Kim, Heejin Ko, Dong-Hyeon Min, Kyoung-Ik Im, Do Jin Park, Soo-Young and Kim, Dong-Pyo 2014. A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications. Lab Chip, Vol. 14, Issue. 21, p. 4270.

    Moore, Jason S. and Jensen, Klavs F. 2014. “Batch” Kinetics in Flow: Online IR Analysis and Continuous Control. Angewandte Chemie International Edition, Vol. 53, Issue. 2, p. 470.

    Moore, Jason S. and Jensen, Klavs F. 2014. “Batch” Kinetics in Flow: Online IR Analysis and Continuous Control. Angewandte Chemie, Vol. 126, Issue. 2, p. 480.

    Pellejero, I. Urbiztondo, M.A. Pina, M.P. and Santamaría, J. 2014. Reinforced SIL-1 micromembranes integrated on chip: Application to CO2 separation. Journal of Membrane Science, Vol. 460, p. 34.

    Ramesh, Suhas Cherkupally, Prabhakar de la Torre, Beatriz G. Govender, Thavendran Kruger, Hendrik G. and Albericio, Fernando 2014. Microreactors for peptide synthesis: looking through the eyes of twenty first century !!!. Amino Acids, Vol. 46, Issue. 9, p. 2091.

    Vasdekis, A. E. Wilkins, M. J. Grate, J. W. Kelly, R. T. Konopka, A. E. Xantheas, S. S. and Chang, T.-M. 2014. Solvent immersion imprint lithography. Lab on a Chip, Vol. 14, Issue. 12, p. 2072.

    Woitalka, A. Kuhn, S. and Jensen, K.F. 2014. Scalability of mass transfer in liquid–liquid flow. Chemical Engineering Science, Vol. 116, p. 1.

    Borukhova, Svetlana and Hessel, Volker 2013. Process Intensification for Green Chemistry.


Silicon-Based Microchemical Systems: Characteristics and Applications


Microfabrication techniques and scale-up by replication promise to transform classical batch-wise chemical laboratory procedures into integrated systems capable of providing new understanding and control of fundamental processes. Such integrated microchemical systems would enable rapid, continuous discovery and development of new products with the use of fewer resources and the generation of less waste. Additional opportunities exist for on-demand and on-site synthesis, with perhaps the first applications emerging in portable energy sources based on the conversion of hydrocarbons to hydrogen for miniaturized fuel cells.

Microchemical systems can be realized in a wide range of materials including stainless steel, glass, ceramics, silicon, and polymers. The high mechanical strength, excellent temperature characteristics, and good chemical compatibility of silicon combined with the existing fabrication infrastructure for microelectromechanical systems (MEMS) offer advantages in fabricating chemical microsystems that are compatible with strong solvents and operate at elevated temperatures and pressures. Furthermore, silicon-based microsensors for flow, pressure, and temperature can readily be integrated into the systems.

Microsystems for broad chemical applications should be discovery tools that can easily be applied by chemists and materials scientists while also having a convincing “scale-out” to at least small production levels. The interplay of both these capabilities is important in making microreaction technology successful. Perhaps the largest impact of microchemical systems will ultimately be the ability to explore reaction conditions and chemistry at conditions that are otherwise difficult to establish in the laboratory. Case studies are selected to illustrate microfluidic applications in which silicon adds advantages, specifically, integration of physical sensors and infrared spectroscopy, highthroughput experimentation in moisture-sensitive organic synthesis, controlled synthesis of nanoparticles (quantum dots), multiphase and heterogeneous catalytic reactions at elevated temperatures and pressures, and thermal management in the conversion of hydrocarbons to hydrogen.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1W. Ehrfeld , V. Hessel , and H. Lowe , Microreactors: New Technology for Modern Chemistry (Wiley-VCH, Weinheim, Germany, 2000).

2T. Schwalbe , V. Autze , M. Hohmann , and W. Stirner , Org. Proc. Res. Dev. 8 (2004) p. 440.

3V. Hessel , S. Hardt , and H. Lowe , Chemical Micro Process Engineering: Fundamentals, Modelling and Reactions (Wiley-VCH, Weinheim, Germany, 2004).

4K. Jahnisch , V. Hessel , H. Lowe , and M. Baerns , Ange w. Chem. Int. Ed. 43 (2004) p. 406.

5P.D.I. Fletcher S.J. Haswell E. Pombo-Villar , B.H. Warrington P. Watts , S.Y.F. Wong and X.L. Zhang Tetrahedron 58 (2002) p. 4735.

6A.W. Chow AIChE J. 48 (2002) p. 1590.

8R. Knitter , D. Gohring , P. Risthaus , and J. Hausselt , Microsys. Technol. 7 (2001) p. 85.

9K.F. Jensen Chem. Eng. Sci. 56 (2001) p. 293.

10Y.N. Xia and G.M. Whitesides Angew. Chem. Int. Ed. 37 (1998) p. 551.

11J.C. McDonald and G.M. Whitesides Acc. Chem. Res. 35 (2002) p. 491.

12A.E. Guber M. Heckele , D. Herrmann , A. Muslija , V. Saile , L. Eichhorn , T. Gietzelt , W. Hoffmann , P.C. Hauser J. Tanyanyiw , A. Gerlach , N. Gottschlich , and G. Knebel , Chem. Eng. J. 101 (2004) p. 447.

13J.P. Rolland R.M. Van Dam , D.A. Schorzman S.R. Quake and J.M. Desimone J. Amer. Chem. Soc. 126 (2004) p. 2322.

14R.R. Tummala Proc. IEEE 80 (1992) p. 1924.

15Q.-S. Pu , R. Luttge , H.J.G.E. Gardeniers and A.V.D. Berg Electrophoresis 24 (2003) p. 162.

16G.M. Whitesides E. Ostuni , S. Takayama , X.Y. Jiang and D.E. Ingber Annu. Rev. Biomed. Eng. 3 (2001) p. 335.

17M.A. Unger H.P. Chou T. Thorsen , A. Scherer , and S.R. Quake Science 288 (2000) p. 113.

18T. Thorsen , S.J. Maerkl and S.R. Quake Science 298 (2002) p. 580.

19R.J. Jackman T.M. Floyd R. Ghodssi , M.A. Schmidt and K.F. Jensen J. Micromech. Microeng. 11 (2001) p. 263.

21A.A. Ayon R. Braff , C.C. Lin H.H. Sawin and M.A. Schmidt J. Electrochem. Soc. 146 (1999) p. 339.

23A. Mehra ,X. Zhang , A.A. Ayon I.A. Waitz M.A. Schmidt and C.M. Spadaccini J. Microelectromech. Sys. 9 (2000) p. 517.

24N. De Mas , A. Günther , M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 42 (2003) p. 698.

25L.R. Arana S.B. Schaevitz A.J. Franz M.A. Schmidt and K.F. Jensen J. Microelectromech. Sys. 12 (2003) p. 600.

26R. Srinivasan , I.-M. Hsing , P.E. Berger K.F. Jensen S.L. Firebaugh M.A. Schmidt M.P. Harold J.J. Lerou and J.F. Ryley AIChE J. 43 (1997) p. 3059.

27M.W. Losey R.J. Jackman S.L. Firebaugh M.A. Schmidt and K.F. Jensen J. Microelectromech. Sys. 11 (2002) p. 709.

28J. Drott ,K. Lindstrom .,L. Rosengren , andT. Laurell ., J. Micromech. Microeng. 7 (1997) p. 14.

29C.K. Fredrickson and Z.H. Fan Lab Chip 4 (2004) p. 526.

32E. Garcia-Egido , V. Spikmans , S.Y.F. Wong and B.H. Warrington Lab Chip 3 (2003) p. 73.

34T. Kraus , A. Günther , N. De Mas , M.A. Schmidt and K.F. Jensen Exp. Fluids 36 (2004) p. 819.

36S.L. Firebaugh K.F. Jensen and M.A. Schmidt J. Microelectromech. Syst. 7 (1998) p. 128.

37T.M. Floyd M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 44 (2005) p. 2351.

38D.J. Quiram I.M. Hsing A.J. Franz K.F. Jensen and M.A. Schmidt Chem. Eng. Sci. 55 (2000) p. 3065.

39A.F. Lopeandia L.L. Cerdo M.T. Clavaguera-Mora , L.R. Arana K.F. Jensen F.J. Munoz and J. Rodriguez-Viejo , Rev. Sci. Instrum. 76 065104/1 (2005).

40T. Vilkner ,D. Janasek , andA. Manz , Anal. Chem. 76 (2004) p. 3373.

41P.A. Auroux D. Iossifidis , D.R. Reyes and A. Manz, Anal. Chem. 74 (2002) p. 2637.

42D.R. Reyes D. Iossifidis , P.A. Auroux and A. Manz , Anal. Chem. 74 (2002) p. 2623.

43H. Lu , M.A. Schmidt and K.F. Jensen Lab Chip 1 (2001) p. 22.

44S.L. Firebaugh K.F. Jensen and M.A. Schmidt J. Microelectromech. Syst. 10 (2001) p. 232.

45S.L. Firebaugh K.F. Jensen and M.A. Schmidt J. Appl. Phys. 92 (2002) p. 1555.

46R. Herzig-Marx , K.T. Queeney R.J. Jackman M.A. Schmidt and K.F. Jensen Anal. Chem. 76 (2004) p. 6476.

47M. Grabarnick andS. Zamir , Org. Process Res. Dev. 7 (2003) p. 237.

48P.H. Seeberger and D.B. Werz Nat. Rev. Drug Discov. 4 (2005) p. 751.

50A.D. Stroock S.K.W. Dertinger A. Ajdari ,I. Mezic , H.A. Stone and G.M. Whitesides Science 295 (2002) p. 647.

51I. Shestopalov , J.D. Tice and R.F. Ismagilov Lab Chip 4 (2004) p. 316.

52H. Song , J.D. Tice and R.F. Ismagilov Angew. Chem. Int. Ed. 42 (2003) p. 768.

53A. Gunther ,M. Jhunjhunwala ,M. Thalmann , M.A. Schmidt and K.F. Jensen Langmuir 21 (2005) p. 1547.

54A. Gunther , S.A. Khan M. Thalmann , F. Trachsel , and K.F. Jensen Lab Chip 4 (2004) p. 278.

55B.K.H. Yen A. Gunther , M.A. Schmidt K.F. Jensen and M.G. Bawendi Angew. Chem. Int. Ed. 44 (2005) p. 5447.

56S.K. Ajmera C. Delattre , M.A. Schmidt and K.F. Jensen J. Catal. 209 (2002) p. 401.

57S.K. Ajmera C. Delattre , M.A. Schmidt and K.F. Jensen Stud. Surf. Sci. Catal. 145 (2003) p. 97.

58M.W. Losey M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 40 (2001) p. 2555.

59J. Kobayashi ,Y. Mori ,K. Okamoto ,R. Akiyama ,M. Ueno ,T. Kitamori , and S. Kobayashi , Science 304 (2004) p. 1305.

61R.M. Tiggelaar J.W. Berenschot J.H. De Boer , R.G.P. Sanders J.G.E. Gardeniers R.E. Oosterbroek A. Van Den Berg , and M.C. Elwenspoek Lab Chip 5 (2005) p. 326.

62Y.H. Ma I.P. Mardilovich and E.E. Engwall Annu. N.Y. Acad. Sci. 984 (2003) p. 346.

65B.A. Wilhite M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 43 (2004) p. 7083.

66H.D. Tong F.C. Gielens J.G.E. Gardeniers H.V. Jansen J.W. Berenschot M.J. De Boer , J.H. De Boer , C.J.M. Van Rijn , and M.C. Elwenspoek J. Microelectromech. Sys. 14 (2005) p. 113.

67H.D. Tong F.C. Gielens J.G.E. Gardeniers H.V. Jansen C.J.M. Van Rijn , M.C. Elwenspoek andW. Nijdam , Ind. Eng. Chem. Res. 43 (2004) p. 4182.

68H.D. Tong J.W.E. Berenschot M.J. De Boer , J.G.E. Gardeniers H. Wensink , H.V. Jansen W. Nijdam , M.C. Elwenspock E.C. Gielens and C.J.M. Van Rijn , J. Microelectromech. Sys. 12 (2003) p. 622.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *