Skip to main content
×
Home
    • Aa
    • Aa

Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly

  • Sergei V. Kalinin (a1) and Stephen J. Pennycook (a2)
Abstract
Abstract

The two current reigning paradigms enabling nanotechnology are scanning probe microscopy and molecular machine devices that date back to seminal experiments by Eigler and visionary work by Drexler, respectively. The nanoscience and nanotechnology community is seeing the emergence of a third paradigm—the use of the atomically focused beam of a scanning transmission electron microscope (STEM) to control and direct matter on the atomic scale. Beam-induced modifications involving one atom or a small group of atoms can be induced and monitored in real time with atomic resolution. Combined with the development of beam-control electronics, big data acquisition, and analytical tools such as artificial intelligence-based feedback systems, electron and ion microscopies are at the brink of a transition from purely imaging tools to tools capable of creating structures with atomic precision and high throughput. In this issue of MRS Bulletin, we present recent advances in electron- and ion-beam-based atomic fabrication on surfaces, in layered materials, and finally in three dimensions—the ultimate dream and possibly the final frontier of nanoscience.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly
      Available formats
      ×
Copyright
References
Hide All
1. MullerE.W., J. Appl. Phys. 27 (5), 474 (1956).
2. KnollM., RuskaE., Z. Phys. A Hadrons Nucl. 78, 318 (1932).
3. von ArdenneM., Z. Phys. 109 (9–10), 553 (1938).
4. von ArdenneM., Z. Tech. Phys. 19, 407 (1938).
5. MenterJ., Proc. R. Soc. Lond. A 236 (1204), 119 (1956).
6. CreweA.V., WallJ., LangmoreJ., Science 168 (3937), 1338 (1970).
7. CreweA.V., EggenbergerD.N., WallJ., WelterL.M., Rev. Sci. Instrum. 39 (4), 576 (1968).
8. WallJ., LangmoreJ., IsaacsonM., CreweA.V., Proc. Natl. Acad. Sci. U.S.A. 71 (1), 1 (1974).
9. PennycookS.J., BoatnerL.A., Nature 336 (6199), 565 (1988).
10. PennycookS.J., JessonD.E., Phys. Rev. Lett. 64 (8), 938 (1990).
11. PennycookS.J., VarelaM., J. Electron Microsc. 60, S213 (2011).
12. BinnigG., QuateC.F., GerberC., Phys. Rev. Lett. 56 (9), 930 (1986).
13. BinnigG., RohrerH., GerberC., WeibelE., Phys. Rev. Lett. 50 (2), 120 (1983).
14. BinnigG., RohrerH., Helv. Phys. Acta 55 (6), 726 (1982).
15. FeynmanR.P., Caltech Eng. Sci. 23 (5), 22 (1960).
16. EiglerD.M., SchweizerE.K., Nature 344 (6266), 524 (1990).
17. DrexlerE., Engines of Creation: The Coming Era of Nanotechnology (Anchor, New York, 1987).
18. CoskunA., BanaszakM., AstumianR.D., StoddartJ.F., GrzybowskiB.A., Chem. Soc. Rev. 41 (1), 19 (2012).
19. BrowneW.R., FeringaB.L., Nat. Nanotechnol. 1 (1), 25 (2006).
20. RuangsupapichatN., PollardN.M., HarutyunyanS.R., FeringaB.L., Nat. Chem. 3 (1), 53 (2011).
21. SahaS., StoddartJ.F., Chem. Soc. Rev. 36 (1), 77 (2007).
22. FletcherS.P., DumurF., PollardM.M., FeringaB.L., Science 310 (5745), 80 (2005).
23. BalzaniV., Gomez-LopezM., StoddartJ.F., Acc. Chem. Res. 31 (7), 405 (1998).
24. KudernacT., RuangsupapichatN., ParschauM., MaciáB., KatsonisN., HarutyunyanS.R., ErnstK.H., FeringaB.L., Nature 479 (7372), 208 (2011).
25. SzymkućS., GajewskaE.P., KlucznikT., MolgaK., DittwaldP., StartekM., BajczykM., GrzybowskiB.A., Angew. Chem. Int. Ed. 55 (20), 5904 (2016).
26. CadedduA., WylieE.K., JurczakJ., Wampler-DotyM., GrzybowskiB.A., Angew. Chem. Int. Ed. 53 (31), 8108 (2014).
27. HellerE.J., CrommieM.F., LutzC.P., EiglerD.M., Nature 369 (6480), 464 (1994).
28. HeinrichA.J., LutzC.P., GuptaJ.A., EiglerD.M., Science 298 (5597), 1381 (2002).
29. DonatiF., RusponiS., StepanowS., WäckerlinC., SinghaA., PersichettiL., BalticR., DillerK., PattheyF., FernandesE., DreiserJ., Science 352 (6283), 318 (2016).
30. IBM, “A Boy and His Atom: The World’s Smallest Movie,” YouTube video, 1:33, posted April 30, 2013, https://www.youtube.com/watch?v=oSCX78-8-q0.
31. MorgensternK., LorenteN., RiederK.H., Phys. Status Solidi B 250 (9), 1671 (2013).
32. HlaS.W., Rep. Prog. Phys. 77 (5), (2014).
33. ShiraiY., OsgoodA.J., ZhaoY., KellyK.F., TourJ.M., Nano Lett. 5 (11), 2330 (2005).
34. FuechsleM., MiwaJ.A., MahapatraS., RyuH., LeeS., WarschkowO., HollenbergL.C., KlimeckG., SimmonsM.Y., Nat. Nanotechnol. 7 (4), 242 (2012).
35. BenjaminS., KellyJ., Nat. Mater. 14 (6), 561 (2015).
36. SchofieldS.R., CursonN.J., SimmonsM.Y., RueßF.J., HallamT., OberbeckL., ClarkR.G., Phys. Rev. Lett. 91 (13), 136104 (2003).
37. FuechsleM., MiwaJ.A., MahapatraS., RyuH., LeeS., WarschkowO., HollenbergL.C., KlimeckG., SimmonsM.Y., Nat. Nanotechnol. 7 (4), 242 (2012).
38. VarelaM., FindlayS.D., LupiniA.R., ChristenH.M., BorisevichA.Y., DellbyN., KrivanekO.L., NellistP.D., OxleyM.P., AllenL.J., PennycookS.J., Phys. Rev. Lett. 92 (9), 095502 (2004).
39. BorisevichA.Y., LupiniA.R., PennycookS.J., Proc. Natl. Acad. Sci. U.S.A. 103 (9), 3044 (2006).
40. ChangH.J., KalininS.V., MorozovskaA.N., HuijbenM., ChuY.H., YuP., RameshR., EliseevE.A., SvechnikovG.S., PennycookS.J., BorisevichA.Y, Adv. Mater. 23 (21), 2474 (2011).
41. Chun-LinJ., NagarajanV., Jia-QingH., HoubenL., ZhaoT., RameshR., UrbanK., WaserR., Nat. Mater. 6 (1), 64 (2007).
42. BorisevichA.Y., ChangH.J., HuijbenM., OxleyM.P., OkamotoS., NiranjanM.K., BurtonJ.D., TsymbalE.Y., ChuY.H., YuP., RameshR., Phys. Rev. Lett. 105 (8), (2010).
43. KimY.M., HeJ., BiegalskiM.D., AmbayeH., LauterV., ChristenH.M., PantelidesS.T., PennycookS.J., KalininS.V., BorisevichA.Y., Nat. Mater. 11 (10), 888 (2012).
44. YankovichA.B., BerkelsB., DahmenW., BinevP., SanchezS.I., BradleyS.A., LiA., SzlufarskaI., VoylesP.M., Nat. Commun. 5, 4155 (2014).
45. HeQ., IshikawaR., LupiniA.R., QiaoL., MoonE.J., OvchinnikovO., MayS.J., BiegalskiM.D., BorisevichA.Y., ACS Nano 9 (8), 8412 (2015).
46. KimD.Y., LinS.Z., WeickertF., KenzelmannM., BauerE.D., RonningF., ThompsonJ.D., MovshovichR., Phys. Rev. X 6 (4), 041059 (2016).
47. ManfrinatoV.R., WenJ., ZhangL., YangY., HobbsR.G., BakerB., SuD., ZakharovD., ZaluzecN.J., MillerD.J., StachE.A., Nano Lett. 14 (8), 4406 (2014).
48. ManfrinatoV.R., ZhangL., SuD., DuanH., HobbsR.G., StachE.A., BerggrenK.K, Nano Lett. 13 (4), 1555 (2013).
49. DaiS., ZhaoJ., XieL., CaiY., WangN., ZhuJ., Nano Lett. 12 (5), 2379 (2012).
50. AmkreutzD., MüllerJ., SchmidtM., HänelT., SchulzeT.F., Prog. Photovolt. 19 (8), 937 (2011).
51. WangZ.L., ItohN., MatsunamiN., ZhaoQ.T., Nucl. Instrum. Methods Phys. Res. B 100 (4), 493 (1995).
52. JencicI., BenchM.W., RobertsonI.M., KirkM.A., J. Appl. Phys. 78 (2), 974 (1995).
53. YangX., WangR., YanH., ZhangZ., Mater. Sci. Eng. B 49 (1), 5 (1997).
54. LiZ.C., Acta Metall. Sinica 39 (1), 13 (2003).
55. KrasheninnikovA.V., NordlundK., J. Appl. Phys. 107 (7), 3 (2010).
56. Gonzalez-MartinezI.G., BachmatiukA., BezuglyV., KunstmannJ., GemmingT., LiuZ., CunibertiG., RümmeliM.H., Nanoscale 8 (22), 11340 (2016).
57. JesseS., BorisevichA.Y., FowlkesJ.D., LupiniA.R., RackP.D., UnocicR.R., SumpterB.G., KalininS.V., BelianinovA., OvchinnikovaO.S., ACS Nano 10 (6), 5600 (2016).
58. JiangN., Rep. Prog. Phys. 79 (1), (2016).
59. JesseS., HeQ., LupininA.R., LeonardD., OxleyM.P., OvchinnikovO., UnocicR.R., TselevA., Fuentes-CabreraM., SumpterB.G., PennycookS.J., KalininS.V., BorisevichA.Y., Small 11 (44), 5895 (2015).
60. BaeI.T., ZhangY., WeberW.J., HiguchiM., GiannuzziL.A., Appl. Phys. Lett. 90 (2), 021912 (2007).
61. ZhangY., LianJ., WangC.M., JiangW., EwingR.C., WeberW.J., Phys. Rev. B Condens. Matter 72 (9), 094112 (2005).
62. HartJ.L., LiuS., LangA.C., HubertA., ZukauskasA., CanaliasC., BeanlandR., RappeA.M., ArredondoM., TaheriM.L., Phys. Rev. B Condens. Matter 94 (17), 174104 (2016).
63. CaoF., ZhengH., JiaS., BaiX., LiL., ShengH., WuS., HanW., LiM., WenG., YuJ., J. Phys. Chem. C 119 (38), 22244 (2015).
64. ZhengH., RivestJ.B., MillerT.A., SadtlerB., LindenbergA., ToneyM.F., WangL.W., KisielowskiC., AlivisatosA.P, Science 333 (6039), 206 (2011).
65. KomsaH.-P., KotakoskiJ., KuraschS., LehtinenO., KaiserU., KrasheninnikovA.V., Phys. Rev. Lett. 109 (3), 035503 (2012).
66. DingY., ChenY., PradelK.C., LiuM., WangZ.L., J. Appl. Phys. 120 (21), 214302 (2016).
67. YangZ., YinL., LeeJ., RenW., ChengH.M., YeH., PantelidesS.T., PennycookS.J., ChisholmM.F., Angew. Chem. Int. Ed. 53 (34), 8908 (2014).
68. IshikawaR., MishraR., LupiniA.R., FindlayS.D., TaniguchiT., PantelidesS.T., PennycookS.J., Phys. Rev. Lett. 113 (15), 155501 (2014).
69. UnocicR.R., LupiniA.R., BorisevichA.Y., CullenD.A., KalininS.V., JesseS., Nanoscale 8 (34), 15581 (2016).
70. KimD.H., JangH.S., KimC.D., ChoD.S., KangH.D., LeeH.R., Chem. Phys. Lett. 378 (3–4), 232 (2003).
71. CaoF., ZhengH., JiaS., BaiX., LiL., ShengH., WuS., HanW., LiM., WenG., YuJ., J. Phys. Chem. C 119 (38), 22244 (2015).
72. PennycookT.J., JonesL., PetterssonH., CoelhoJ., CanavanM., Mendoza-SanchezB., NicolosiV., NellistP.D., Sci. Rep. 4, 7555 (2014).
73. ChamberlainT.W., BiskupekJ., SkowronS.T., MarkevichA.V., KuraschS., ReimerO., WalkerK.E., RanceG.A., FengX., MüllenK., TurchaninA., LebedevaM.A., MajougaA.G., NenajdenkoV.G., KaiserU., BesleyE., KhlobystovA.N., ACS Nano 11 (3), 2509 (2017).
74. RobertsonA.W., AllenC.S., WuY.A., HeK., OlivierJ., NeethlingJ., KirklandA.I., WarnerJ.H., Nat. Commun. 3, 1144 (2012).
75. MeffordJ.T., RongX., AbakumovA.M., HardinW.G., DaiS., KolpakA.M., JohnstonK.P., StevensonK.J., Nat. Commun. 7, 11053 (2016).
76. IshikawaR., LupiniA.R., FindlayS.D., TaniguchiT., PennycookS.J., Nano Lett. 14 (4), 1903 (2014).
77. ManfrinatoV.R., SteinA., ZhangL., NamC.Y., YagerK.G., StachE.A., BlackC.T., Nano Lett. (forthcoming).
78. KalininS.V., BorisevichA., JesseS., Nature 539 (7630), 485 (2016).
79. KalininS.V., Foresight Institute, “Atomic Forge—Foresight Institute.” YouTube video, 5:25., posted February 14, 2017, https://www.youtube.com/watch?v=mZMhRPAJRsw.
80. RodenburgJ.M., McCallumB.C., NellistP.D., Ultramicroscopy 48 (3), 304 (1993).
81. NellistP.D., McCallumB.C., RodenburgJ.M., Nature 374, 630 (1995).
82. HüeF., RodenburgJ.M., MaidenA.M., SweeneyF., MidgleyP.A., Phys. Rev. B 82, 121415, (2010).
83. MishraR., IshikawaR., LupiniA.R., PennycookS.J., MRS Bull. 42 (9), 644 (2017).
84. ZhaoX., KotakoskiJ., MeyerJ.C., SutterE., SutterP., KrasheninnikovA.V., KaiserU., ZhouW., MRS Bull. 42 (9), 667 (2017).
85. BelianinovA., BurchM.J., KimS., TanS., HlawacekG., OvchinnikovaO.S., MRS Bull. 42 (9), 660 (2017).
86. JiangN., ZarkadoulaE., NarangP., MaksovA., KravchenkoI., BorisevichA., JesseS., KalininS.V., MRS Bull. 42 (9), 653 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 149
Total number of PDF views: 376 *
Loading metrics...

Abstract views

Total abstract views: 877 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 24th October 2017. This data will be updated every 24 hours.