Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 99
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Afonin, G.V. Mitrofanov, Yu.P. Makarov, A.S. Kobelev, N.P. Wang, W.H. and Khonik, V.A. 2016. Universal relationship between crystallization-induced changes of the shear modulus and heat release in metallic glasses. Acta Materialia, Vol. 115, p. 204.


    Feng, S.D. Qi, L. Wang, L.M. Yu, P.F. Zhang, S.L. Ma, M.Z. Zhang, X.Y. Jing, Q. Ngai, K.L. Greer, A.L. Li, G. and Liu, R.P. 2016. Structural feature of Cu64Zr36 metallic glass on nanoscale: Densely-packed clusters with loosely-packed surroundings. Scripta Materialia, Vol. 115, p. 57.


    Han, J. J. Wang, C. P. Liu, X. J. Wang, Y. Liu, Z.-K. Zhang, T.-Y. and Jiang, J. Z. 2016. Abnormal correlation between phase transformation and cooling rate for pure metals. Scientific Reports, Vol. 6, p. 22391.


    Lu, Y. M. Zeng, J. F. Wang, S. Sun, B. A. Wang, Q. Lu, J. Gravier, S. Bladin, J. J. Wang, W. H. Pan, M. X. Liu, C. T. and Yang, Y. 2016. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass. Scientific Reports, Vol. 6, p. 29357.


    Mitrofanov, Yu.P. Csach, K. Juríková, A. Miškuf, J. Wang, W.H. and Khonik, V.A. 2016. Densification-induced heat release upon structural relaxation of Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids, Vol. 448, p. 31.


    Nair, Bindusri and Geetha Priyadarshini, B. 2016. Process, structure, property and applications of metallic glasses. AIMS Materials Science, Vol. 3, Issue. 3, p. 1022.


    Zeng, Qiaoshi Lin, Yu Liu, Yijin Zeng, Zhidan Shi, Crystal Y. Zhang, Bo Lou, Hongbo Sinogeikin, Stanislav V. Kono, Yoshio Kenney-Benson, Curtis Park, Changyong Yang, Wenge Wang, Weihua Sheng, Hongwei Mao, Ho-kwang and Mao, Wendy L. 2016. General 2.5 power law of metallic glasses. Proceedings of the National Academy of Sciences, Vol. 113, Issue. 7, p. 1714.


    Cao, Q.P. Jin, J.B. Ma, Y. Cao, X.Z. Wang, B.Y. Qu, S.X. Wang, X.D. Zhang, D.X. and Jiang, J.Z. 2015. Enhanced plasticity in Zr–Cu–Ag–Al–Be bulk metallic glasses. Journal of Non-Crystalline Solids, Vol. 412, p. 35.


    Evenson, Zach Koschine, Tönjes Wei, Shuai Gross, Oliver Bednarcik, Jozef Gallino, Isabella Kruzic, Jamie J. Rätzke, Klaus Faupel, Franz and Busch, Ralf 2015. The effect of low-temperature structural relaxation on free volume and chemical short-range ordering in a Au49Cu26.9Si16.3Ag5.5Pd2.3 bulk metallic glass. Scripta Materialia, Vol. 103, p. 14.


    Gao, Hui Xiang, Rui Zhou, Shaoxiong Dong, Bangshao and Wang, Yanguo 2015. The influence of P on glass forming ability and clusters in melt of FeSiBP amorphous soft-magnetic alloy. Journal of Materials Science: Materials in Electronics, Vol. 26, Issue. 10, p. 7804.


    Guo, G.Q. and Yang, L. 2015. Structural mechanisms of the microalloying-induced high glass-forming abilities in metallic glasses. Intermetallics, Vol. 65, p. 66.


    Khonik, Vitaly 2015. Understanding of the Structural Relaxation of Metallic Glasses within the Framework of the Interstitialcy Theory. Metals, Vol. 5, Issue. 2, p. 504.


    Sun, B.A. and Wang, W.H. 2015. The fracture of bulk metallic glasses. Progress in Materials Science, Vol. 74, p. 211.


    Wang, W.Y. Han, J.J. Fang, H.Z. Wang, J. Liang, Y.F. Shang, S.L. Wang, Y. Liu, X.J. Kecskes, L.J. Mathaudhu, S.N. Hui, X. and Liu, Z.K. 2015. Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Materialia, Vol. 97, p. 75.


    Yu, C.Y. Liu, X.J. Zheng, G.P. Niu, X.R. and Liu, C.T. 2015. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses. Journal of Alloys and Compounds, Vol. 627, p. 48.


    Khonik, V. A. and Kobelev, N. P. 2014. Alternative understanding for the enthalpy vs volume change upon structural relaxation of metallic glasses. Journal of Applied Physics, Vol. 115, Issue. 9, p. 093510.


    Lad, K.N. 2014. Correlation between atomic-level structure, packing efficiency and glass-forming ability in Cu–Zr metallic glasses. Journal of Non-Crystalline Solids, Vol. 404, p. 55.


    Li, M.Z. 2014. Correlation Between Local Atomic Symmetry and Mechanical Properties in Metallic Glasses. Journal of Materials Science & Technology, Vol. 30, Issue. 6, p. 551.


    Makarov, A. S. Khonik, V. A. Kobelev, N. P. Mitrofanov, Yu. P. and Mitrofanova, G. V. 2014. Thermal effects induced during heating of the bulk metallic glass Zr46Cu46Al8. Physics of the Solid State, Vol. 56, Issue. 7, p. 1297.


    Shi, C.L. and Xi, X.K. 2014. NMR investigation of atomic bonding properties in Al–Li alloys. Intermetallics, Vol. 51, p. 64.


    ×

Structural Aspects of Metallic Glasses

Abstract
Abstract

A recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute—solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with “free” and “anti-free” microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.P.H. Gaskell , J. Non-Cryst. Solids 351, 1003 (2005).

3.J.D. Bernal , Nature 185, 68 (1960).

4.J.D. Bernal , J. Mason , Nature 188, 910 (1960).

5.J.D. Bernal , Proc. R. Soc. London, Ser. A 280, 299 (1964).

6.H.J. Frost , R. Raj , J. Am. Ceram. Soc. 65, C19 (1982).

8.P.H. Gaskell , J. Non-Cryst. Solids 32, 207 (1979).

10.P.H. Gaskell , in Topics in Applied Physics, Glassy Metals II, H. Beck , H.-J. Guntherodt , Eds. (Springer, Berlin, 1983) p. 5.

11.J. Sietsma , B.J. Thijsse , J. Non-Cryst. Solids 135, 146 (1991).

13.T.C. Hufnagel , S. Brennan , Phys. Rev. B 67, 014203 (2003).

14.P.M. Ossi , Disordered Materials (Springer, Berlin, 2003).

16.D.B. Miracle , E.A. Lord , S. Ranganathan , Trans. JIM 47, 1737 (2006).

18.D.B. Miracle , Nature Mater. 3, 697 (2004).

19.D.B. Miracle , Acta Mater. 54, 4317 (2006).

20.H.W. Sheng , W.K. Luo , F.M. Alamgir , J.M. Bai , E. Ma , Nature 439, 419 (2006).

21.G.W. Lee , A.K. Gangopadhyay , K.F. Kelton , R.W. Hyers , T.J. Rathz , J.R. Rogers , D.S. Robinson , Phys. Rev. Lett. 93, 037802 (2004).

22.L.Q. Xing , A. Mukhopadhyay , W.E. Buhro , K.F. Kelton , Philos. Mag. Lett. 84, 293 (2004).

23.Y. Zhang , A.L. Greer , Appl. Phys. Lett. 89, 071907 (2006).

25.J.L. Finney , Nature 266, 309 (1977).

26.D.E. Polk , Acta Metall. 20, 485 (1972).

27.F.C. Frank , Proc. R. Soc. London, Ser. A 215, 43 (1952).

28.L.Q. Xing , T.C. Hufnagel , J. Eckert , W. Loser , L. Schultz , Appl. Phys. Lett. 77, 1970 (2000).

29.J. Saida , M. Matsushita , A. Inoue , J. Appl. Phys. 90, 4717 (2001).

30.J. Saida , M. Matsushita , A. Inoue , Mater. Trans. JIM 42, 1493 (2001).

31.K.F. Kelton , G.W. Lee , A.K. Gangopadhyay , R.W. Hyers , T.J. Rathz , J.R. Rogers , M.B. Robinson , D.S. Robinson , Phys. Rev. Lett. 90, 195504 (2003).

32.B.S. Murty , D.H. Ping , K. Hono , A. Inoue , Acta Mater. 48, 3985 (2000).

33.A. Inoue , T. Zhang , J. Saida , M. Matsushita , M.W. Chen , T. Sakurai , Mater. Trans. JIM 40, 1181 (1999).

34.M.W. Chen , T. Zhang , A. Inoue , Appl. Phys. Lett. 75, 1697 (1999).

36.U. Kuhn , J. Eckert , N. Mattern , L. Schultz , Appl. Phys. Lett. 77, 3176 (2000).

38.T.H. Kim , A.K. Gangopadhyay , L.Q. Xing , G.W. Lee , Y.T. Shen , K.F. Kelton , A.I. Goldman , R.W. Hyers , J.R. Rogers , Appl. Phys. Lett. 87, 251924 (2005).

40.W.K. Luo , H.W. Sheng , F.M. Alamgir , J. M. Bai , J.H. He , E. Ma , Phys. Rev. Lett. 92, 145502 (2004).

41.M.M.J. Treacy , J.M. Gibson , L. Fan , D. J. Paterson , I. McNulty , Rep. Prog. Phys. 68, 2899 (2005).

42.P.M. Voyles , J.E. Gerbi , M.M.J. Treacy , J. M. Gibson , J.R. Abelson , Phys. Rev. Lett. 86, 5514 (2001).

43.W.G. Stratton , J. Hamann , J.H. Perepezko , P.M. Voyles , X. Mao , S.V. Khare , Appl. Phys. Lett. 86, 141910 (2005).

45.G.S. Cargill , F. Spaepen , J. Non-Cryst. Solids 43, 91 (1981).

46.M.A. Marcus , Acta Metall. 27, 879 (1979).

47.A.I. Taub , F. Spaepen , Acta Metall. 28, 1781 (1980).

48.A. Van den Beukel , J. Sietsma , Acta Metall. 38, 383 (1990).

49.U. Harms , O. Jin , R.B. Schwarz , J. Non-Cryst. Solids 317, 200 (2003).

51.D. Srolovitz , T. Egami , V. Vitek , Phys. Rev. B 24, 6936 (1981).

52.J. Sietsma , B.J. Thijsse , Phys. Rev. B 52, 3248 (1995).

56.P. Asoka-Kumar , J. Hartley , R. Howell , P. A. Sterne , T.G. Nieh , Appl. Phys. Lett. 77, 1973 (2000).

57.B.P. Kanungo , S.C. Glade , P. Asoka-Kumar , K.M. Flores , Intermetallics 12, 1073 (2004).

58.C. Nagel , K. Ratzke , E. Schmidtke , F. Faupel , W. Ulfert , Phys. Rev. B 60, 9212 (1999).

60.K.M. Flores , B.P. Kanungo , S.C. Glade , P. Asoka-Kumar , J. Non-Cryst. Solids, 353, 1201 (2007).

61.K.M. Flores , E. Sherer , A. Bharathula , H. Chen , Y.C. Jean , Acta Mater. 55, 3403 (2007).

62.F. Spaepen , Acta Metall. 25, 407 (1977).

63.A.S. Argon , Acta Metall. 27, 47 (1979).

64.M.H. Cohen , D. Turnbull , J. Chem. Phys. 31, 1164 (1959).

66.P. Klugkist , K. Ratzke , S. Rehders , P. Troche , F. Faupel , Phys. Rev. Lett. 80, 3288 (1998).

67.F. Faupel , W. Frank , M.-P. Macht , H. Mehrer , V. Naundorf , K. Rätzke , H.R. Schober , S.K. Sharma , H. Teichler , Rev. Mod. Phys. 75, 237 (2003).

69.P. DeHey , J. Sietsma , A.V.D. Beukel , Acta Mater. 46, 5873 (1998).

70.K. Hajlaoui , T. Benameur , G. Vaughan , A. R. Yavari , Scripta Mater. 51, 843 (2004).

71.F.H. Stillinger , T.A. Weber , Science 225, 983 (1984).

72.M. Goldstein , J. Chem. Phys. 51, 3739 (1969).

73.T. Egami , Rep. Prog. Phys. 47, 1601 (1984).

74.Y. Suzuki , J. Haimovic , T. Egami , Phys. Rev. 35, 2162 (1987).

76.T. Egami , D. Srolovitz , J. Phys. F: Metal Phys. 12, 2414 (1982).

77.S.-P. Chen , T. Egami , V. Vitek , Phys. Rev. 37, 2440 (1988).

78.T. Egami , S. J. Poon , Z. Zhang , V. Keppens , Phys. Rev. B 76, 024203 (2007).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×