Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 69
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ishii, Akio Li, Ju and Ogata, Shigenobu 2016. Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation. International Journal of Plasticity, Vol. 82, p. 32.


    Ramachandramoorthy, Rajaprakash Gao, Wei Bernal, Rodrigo and Espinosa, Horacio 2016. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition. Nano Letters, Vol. 16, Issue. 1, p. 255.


    Zhang, M. Wang, Y. J. and Dai, L. H. 2016. Correlation between strain rate sensitivity and α relaxation of metallic glasses. AIP Advances, Vol. 6, Issue. 7, p. 075022.


    Krasnikov, V.S. and Mayer, A.E. 2015. Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: Molecular dynamics simulations and continuum modeling. International Journal of Plasticity, Vol. 74, p. 75.


    Kushima, Akihiro Qian, Xiaofeng Zhao, Peng Zhang, Sulin and Li, Ju 2015. Ripplocations in van der Waals Layers. Nano Letters, Vol. 15, Issue. 2, p. 1302.


    Li, N. Yadav, S.K. Liu, X.-Y. Wang, J. Hoagland, R.G. Mara, N. and Misra, A. 2015. Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations. Scientific Reports, Vol. 5, p. 15813.


    Liang, Z.Y. and Huang, M.X. 2015. Deformation twinning in small-sized face-centred cubic single crystals: Experiments and modelling. Journal of the Mechanics and Physics of Solids, Vol. 85, p. 128.


    Liu, Ben-Qiong Duan, Xiao-Xi Sun, Guang-Ai Yang, Jin-Wen and Gao, Tao 2015. Structural instabilities and mechanical properties of U2Mo from first principles calculations. Phys. Chem. Chem. Phys., Vol. 17, Issue. 6, p. 4089.


    Mao, Yunwei Li, Ju Lo, Yu-Chieh Qian, Xiaofeng and Ma, Evan 2015. Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures. Physical Review B, Vol. 91, Issue. 21,


    Yan, Chunguang Wang, Rongshan Wang, Yanli Wang, Xitao Lin, Zhi Bai, Guanghai and Zhang, Yanwei 2015. Size effects in indentation measurements of Zr–1Nb–0.05Cu alloy. Materials Science and Engineering: A, Vol. 628, p. 50.


    Konstantinidis, Avraam A. Aifantis, Katerina E. and De Hosson, Jeff Th.M. 2014. Capturing the stochastic mechanical behavior of micro and nanopillars. Materials Science and Engineering: A, Vol. 597, p. 89.


    Lee, Hongsuk and Tomar, Vikas 2014. Understanding the influence of grain boundary thickness variation on the mechanical strength of a nickel-doped tungsten grain boundary. International Journal of Plasticity, Vol. 53, p. 135.


    Maciejewski, Kimberly Dahal, Jinesh Sun, Yaofeng and Ghonem, Hamouda 2014. Creep–Environment Interactions in Dwell-Fatigue Crack Growth of Nickel Based Superalloys. Metallurgical and Materials Transactions A, Vol. 45, Issue. 5, p. 2508.


    Shang, S.L. Wang, W.Y. Zhou, B.C. Wang, Y. Darling, K.A. Kecskes, L.J. Mathaudhu, S.N. and Liu, Z.K. 2014. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Materialia, Vol. 67, p. 168.


    Šmida, Tibor and Magula, Vladimír 2014. Brittle to ductile transition – An engineer’s point of view. Materials & Design (1980-2015), Vol. 54, p. 582.


    Uranagase, Masayuki and Matsumoto, Ryosuke 2014. Thermal activation analysis of enthalpic and entropic contributions to the activation free energy of basal and prismatic slips in Mg. Physical Review B, Vol. 89, Issue. 22,


    Dahal, Jinesh Maciejewski, Kimberly and Ghonem, Hamouda 2013. Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy. International Journal of Fatigue, Vol. 57, p. 93.


    Jennings, Andrew T. Weinberger, Christopher R. Lee, Seok-Woo Aitken, Zachary H. Meza, Lucas and Greer, Julia R. 2013. Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Materialia, Vol. 61, Issue. 6, p. 2244.


    Kaya, A.A. 2013. Fundamentals of Magnesium Alloy Metallurgy.


    Panchal, Jitesh H. Kalidindi, Surya R. and McDowell, David L. 2013. Key computational modeling issues in Integrated Computational Materials Engineering. Computer-Aided Design, Vol. 45, Issue. 1, p. 4.


    ×

The Mechanics and Physics of Defect Nucleation

Abstract
Abstract

The following article is based on the Outstanding Young Investigator Award presentation given by Ju Li on April 19, 2006, at the Materials Research Society Spring Meeting in San Francisco. Li received the award “for his innovative work on the atomistic and first-principles modeling of nanoindentation and ideal strength in revealing the genesis of materials deformation and fracture.”

Defect nucleation plays a critical role in the mechanical behavior of materials, especially if the system size is reduced to the submicron scale. At the most fundamental level, defect nucleation is controlled by bond breaking and reformation events, driven typically by mechanical strain and electronegativity differences. For these processes, atomistic and first-principles calculations are uniquely suited to provide an unprecedented level of mechanistic detail. Several connecting threads incorporating notions in continuum mechanics and explicit knowledge of the interatomic energy landscape can be identified, such as homogeneous versus heterogeneous nucleation, cleavage versus shear-faulting tendencies, chemomechanical coupling, and the fact that defects are singularities at the continuum level but regularized at the atomic scale. Examples are chosen from nano-indentation, crack-tip processes, and grain-boundary processes. In addition to the capacity of simulations to identify candidate mechanisms, the computed athermal strength, activation energy, and activation volume can be compared quantitatively with experiments to define the fundamental properties of defects in solids.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.M.D. Uchic , D.M. Dimiduk , J.N. Florando , and W.D. Nix , Science 305 (2004) p. 986.

2.J.R. Greer , W.C. Oliver , and W.D. Nix , Acta Mater. 53 (2005) p. 1821.

3.C.A. Volkert and E.T. Lilleodden , Philos. Mag. 86 (2006) p. 5567.

4.W. Kohn , A.D. Becke , and R.G. Parr , J. Phys. Chem. 100 (1996) p. 12974.

5.S. Ogata , J. Li , N. Hirosaki , Y. Shibutani , and S. Yip , Phys. Rev. B 70 104104 (2004).

6.S.V. Dmitriev , T. Kitamura , J. Li , Y. Umeno , K. Yashiro , and N. Yoshikawa , Acta Mater. 53 (2005) p. 1215.

7.Y. Umeno , A. Kushima , T. Kitamura , P. Gumbsch , and J. Li , Phys. Rev. B 72 165431 (2005).

8.S. Ogata , J. Li , and S. Yip , Science 298 (2002) p. 807.

9.M.S. Daw and M.I. Baskes , Phys. Rev. B 29 (1984) p. 6443.

10.J. Biener , A.M. Hodge , A.V. Hamza , L.M. Hsiung , and J.H. Satcher , J. Appl. Phys. 97 024301 (2005).

11.C.A. Volkert , E.T. Lilleodden , D. Kramer , and J. Weissmuller , Appl. Phys. Lett. 89 061920 (2006).

13.W.W. Gerberich , S.K. Venkataraman , H. Huang , S.E. Harvey , and D.L. Kohlstedt , Acta Metall. Mater. 43 (1995) p. 1569.

14.A. Gouldstone , H.J. Koh , K.Y. Zeng , A.E. Giannakopoulos , and S. Suresh , Acta Mater. 48 (2000) p. 2277.

15.A.M. Minor , S.A.S. Asif , Z. Shan , E.A. Stach , E. Cyrankowski , T.J. Wyrobek , and O.L. Warren , Nature Mater. 5 (2006) p. 697.

17.A. Gouldstone , K.J. Van Vliet , and S. Suresh , Nature 411 (2001) p. 656.

18.W.W. Gerberich , J.C. Nelson , E.T. Lilleodden , P. Anderson , and J.T. Wyrobek , Acta Mater. 44 (1996) p. 3585.

19.H.D. Espinosa , S. Berbenni , M. Panico , and K.W. Schwarz , Proc. Natl. Acad. Sci. USA 102 (2005) p. 16933.

20.J.R. Greer and W.D. Nix , Phys. Rev. B 73 245410 (2006).

21.K. Sieradzki , A. Rinaldi , C. Friesen , and P. Peraltai , Acta Mater. 54 (2006) p. 4533.

22.S. Yip , Nature 391 (1998) p. 532.

23.J.K. Mason , A.C. Lund , and C.A. Schuh , Phys. Rev. B 73 054102 (2006).

24.J. Pokluda , M. Cerny , P. Sandera , and M. Sob , J. Comput. Aided Mater. Des. 11 (2004) p. 1.

25.W. Wang and K. Lu , Philos. Mag. 86 (2006) p. 5309.

27.A. Asenjo , M. Jaafar , E. Carrasco , and J.M. Rojo , Phys. Rev. B 73 075431 (2006).

28.D. Lorenz , A. Zeckzer , U. Hilpert , P. Grau , H. Johansen , and H.S. Leipner , Phys. Rev. B 67 172101 (2003).

29.C.A. Schuh and A.C. Lund , J. Mater. Res. 19 (2004) p. 2152.

30.H. Bei , E.P. George , J.L. Hay , and G.M. Pharr , Phys. Rev. Lett. 95 045501 (2005).

31.H.S. Leipner , D. Lorenz , A. Zeckzer , and P. Grau , Phys. Status Solidi A 183 (2001) p. R4.

33.K.S. Kumar , H. Van Swygenhoven , and S. Suresh , Acta Mater. 51 (2003) p. 5743.

34.L. Lu , Y.F. Shen , X.H. Chen , L.H. Qian , and K. Lu , Science 304 (2004) p. 422.

35.L. Lu , R. Schwaiger , Z.W. Shan , M. Dao , K. Lu , and S. Suresh , Acta Mater. 53 (2005) p. 2169.

36.R.J. Asaro and S. Suresh , Acta Mater. 53 (2005) p. 3369.

38.Y.M. Wang , M.W. Chen , F.H. Zhou , and E. Ma , Nature 419 (2002) p. 912.

39.Y.T.T. Zhu and X.Z. Liao , Nature Mater. 3 (2004) p. 351.

41.F. Shimizu , S. Ogata , and J. Li , Acta Mater. 54 (2006) p. 4293.

42.E.M. Bringa , A. Caro , Y.M. Wang , M. Victoria , J.M. McNaney , B.A. Remington , R.F. Smith , B.R. Torralva , and H. Van Swygenhoven , Science 309 (2005) p. 1838.

43.S.E. Thompson , M. Armstrong , C. Auth , S. Cea , R. Chau , G. Glass , T. Hoffman , J. Klaus , Z. Ma , B. McIntyre , A. Murthy , B. Obradovic , L. Shifren , S. Sivakumar , S. Tyagi , T. Ghani , K. Mistry , M. Bohr , and Y. El-Mansy , IEEE Electron Dev. Lett. 25 (2004) p. 191.

44.P.R. Chidambaram , C. Bowen , S. Chakravarthi , C. Machala , and R. Wise , IEEE Trans. Electron Dev. 53 (2006) p. 944.

45.Z. Zhang , J. Yoon , and Z.G. Suo , Appl. Phys. Lett. 89 261912 (2006).

46.T. Dumitrica , M. Hua , and B.I. Yakobson , Proc. Natl. Acad. Sci. USA 103 (2006) p. 6105.

47.S.L. Zhang , S.L. Mielke , R. Khare , D. Troya , R.S. Ruoff , G.C. Schatz , and T. Belytschko , Phys. Rev. B 71 115403 (2005).

48.J.Y. Huang , S. Chen , Z.F. Ren , Z.Q. Wang , D.Z. Wang , M. Vaziri , Z. Suo , G. Chen , and M.S. Dresselhaus , Phys. Rev. Lett. 97 075501 (2006).

49.H. Mori , S. Ogata , J. Li , S. Akita , and Y. Nakayama , Phys. Rev. B 74 165418 (2006).

50.J.R. Rice and R. Thomson , Philos. Mag. 29 (1974) p. 73.

51.J.R. Rice and G.E. Beltz , J. Mech. Phys. Solids 42 (1994) p. 333.

52.G. Xu , A.S. Argon , and M. Oritz , Philos. Mag. A 75 (1997) p. 341.

53.A.S. Argon , J. Eng. Mater. Technol.-Trans. ASME 123 (2001) p. 1.

55.T. Vegge , T. Rasmussen , T. Leffers , O.B. Pedersen , and K.W. Jacobsen , Phys. Rev. Lett. 85 (2000) p. 3866.

56.V.V. Bulatov , S. Yip , and A.S. Argon , Philos. Mag. A 72 (1995) p. 453.

57.W. Cai , V.V. Bulatov , J.F. Justo , A.S. Argon , and S. Yip , Phys. Rev. Lett. 84 (2000) p. 3346.

58.M. Wen and A.H.W. Ngan , Acta Mater. 48 (2000) p. 4255.

59.B.R. Lawn , D.H. Roach , and R.M. Thomson , J. Mater. Sci. 22 (1987) p. 4036.

60.T. Zhu , J. Li , and S. Yip , Phys. Rev. Lett. 93 205504 (2004).

61.J.W. Cahn and F.R.N. Nabarro , Philos. Mag. A 81 (2001) p. 1409.

62.A.H. Cottrell , Philos. Mag. Lett. 82 (2002) p. 65.

63.J.R. Rice , J. Mech. Phys. Solids 40 (1992) p. 239.

64.J. Li , A.H.W. Ngan , and P. Gumbsch , Acta Mater. 51 (2003) p. 5711.

65.G. Henkelman and H. Jonsson , J. Chem. Phys. 113 (2000) p. 9978.

66.T. Zhu , J. Li , X. Lin , and S. Yip , J. Mech. Phys. Solids 53 (2005) p. 1597.

67.E.B. Tadmor and S. Hai , J. Mech. Phys. Solids 51 (2003) p. 765.

68.V. Vitek , Scripta Metall. 4 (1970) p. 725.

69.A. van de Walle , M. Asta , and G. Ceder , Calphad 26 (2002) p. 539.

71.T. Kitamura , Y. Umeno , and R. Fushino , Mater. Sci. Eng. A 379 (2004) p. 229.

72.J. Li , K.J. Van Vliet , T. Zhu , S. Yip , and S. Suresh , Nature 418 (2002) p. 307.

73.N. Binggeli , N.R. Keskar , and J.R. Chelikowsky , Phys. Rev. B 49 (1994) p. 3075.

74.J.W. Cahn , Acta Metall. 9 (1961) p. 795.

75.D.M. Clatterbuck , C.R. Krenn , M.L. Cohen , and J.W. Morris , Phys. Rev. Lett. 91 135501 (2003).

76.S. Ogata , J. Li , and S. Yip , Phys. Rev. B 71 224102 (2005).

78.R. Peierls , Proc. Phys. Soc. London 52 (1940) p. 34.

79.V.V. Bulatov and E. Kaxiras , Phys. Rev. Lett. 78 (1997) p. 4221.

80.W. Cai , V.V. Bulatov , J.P. Chang , J. Li , and S. Yip , Phys. Rev. Lett. 86 (2001) p. 5727.

81.J. Li , C.Z. Wang , J.P. Chang , W. Cai , V.V. Bulatov , K.M. Ho , and S. Yip , Phys. Rev. B 70 104113 (2004).

82.T. Zhu , J. Li , K.J. Van Vliet , S. Ogata , S. Yip , and S. Suresh , J. Mech. Phys. Solids 52 (2004) p. 691.

83.R.L. Hayes , M. Fago , M. Ortiz , and E.A. Carter , Multiscale Model. Simul. 4 (2005) p. 359.

84.K.J. Van Vliet , J. Li , T. Zhu , S. Yip , and S. Suresh , Phys. Rev. B 67 104105 (2003).

85.P. Schall , I. Cohen , D.A. Weitz , and F. Spaepen , Nature 440 (2006) p. 319.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×