Skip to main content Accessibility help

3D models of the bone marrow in health and disease: yesterday, today, and tomorrow

  • Annamarija Raic (a1), Toufik Naolou (a1), Anna Mohra (a1), Chandralekha Chatterjee (a1) and Cornelia Lee-Thedieck (a1)...


The complex interaction between hematopoietic stem cells (HSCs) and their microenvironment in the human bone marrow ensures a life-long blood production by balancing stem cell maintenance and differentiation. This so-called HSC niche can be disturbed by malignant diseases. Investigating their consequences on hematopoiesis requires a deep understanding of how the niches function in health and disease. To facilitate this, biomimetic models of the bone marrow are needed to analyze HSC maintenance and hematopoiesis under steady state and diseased conditions. Here, 3D bone marrow models, their fabrication methods (including 3D bioprinting), and implementations recapturing bone marrow functions in health and diseases are presented.


Corresponding author

Address all correspondence to Cornelia Lee-Thedieck at


Hide All
1.Crane, G.M., Jeffery, E., and Morrison, S.J.: Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573 (2017).10.1038/nri.2017.53
2.Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., Miyazaki, H., Takahashi, T., and Suda, T.: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685 (2007).10.1016/j.stem.2007.10.020
3.Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M., and Scadden, D.T.: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841 (2003).10.1038/nature02040
4.Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., Mar, J.C., Bergman, A., and Frenette, P.S.: Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637 (2013).10.1038/nature12612
5.Acar, M., Kocherlakota, K.S., Murphy, M.M., Peyer, J.G., Oguro, H., Inra, C.N., Jaiyeola, C., Zhao, Z., Luby-Phelps, K., and Morrison, S.J.: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126 (2015).10.1038/nature15250
6.Winkler, I.G., Barbier, V., Nowlan, B., Jacobsen, R.N., Forristal, C.E., Patton, J.T., Magnani, J.L., and Levesque, J.P.: Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18, 1651 (2012).10.1038/nm.2969
7.Kiel, M.J., Yilmaz, O.H., Iwashita, T., Yilmaz, O.H., Terhorst, C., and Morrison, S.J.: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109 (2005).10.1016/j.cell.2005.05.026
8.Fujisaki, J., Wu, J., Carlson, A.L., Silberstein, L., Putheti, P., Larocca, R., Gao, W., Saito, T.I., Lo Celso, C., Tsuyuzaki, H., Sato, T., Cote, D., Sykes, M., Strom, T.B., Scadden, D.T., and Lin, C.P.: In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216 (2011).10.1038/nature10160
9.Chow, A., Lucas, D., Hidalgo, A., Mendez-Ferrer, S., Hashimoto, D., Scheiermann, C., Battista, M., Leboeuf, M., Prophete, C., van Rooijen, N., Tanaka, M., Merad, M., and Frenette, P.S.: Bone marrow CD169 + macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261 (2011).10.1084/jem.20101688
10.Arai, F., Hosokawa, K., Toyama, H., Matsumoto, Y., and Suda, T.: Role of N-cadherin in the regulation of hematopoietic stem cells in the bone marrow niche. Ann. N. Y. Acad. Sci. 1266, 72 (2012).10.1111/j.1749-6632.2012.06576.x
11.Schroeder, M.A. and DiPersio, J.F.: Mobilization of hematopoietic stem and leukemia cells. J. Leukocyte Biol. 91, 47 (2012).10.1189/jlb.0210085
12.Klein, G.: The extracellular matrix of the hematopoietic microenvironment. Experientia 51, 914 (1995).10.1007/BF01921741
13.Nilsson, S.K., Debatis, M.E., Dooner, M.S., Madri, J.A., Quesenberry, P.J., and Becker, P.S.: Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J. Histochem. Cytochem. 46, 371 (1998).10.1177/002215549804600311
14.Rodgers, K.D., San Antonio, J.D., and Jacenko, O.: Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev. Dyn. 237, 2622 (2008).10.1002/dvdy.21593
15.Goncharova, V., Serobyan, N., Iizuka, S., Schraufstatter, I., de Ridder, A., Povaliy, T., Wacker, V., Itano, N., Kimata, K., Orlovskaja, I.A., Yamaguchi, Y., and Khaldoyanidi, S.: Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J. Biol. Chem. 287, 25419 (2012).10.1074/jbc.M112.376699
16.Coulombel, L., Auffray, I., Gaugler, M.H., and Rosemblatt, M.: Expression and function of integrins on hematopoietic progenitor cells. Acta Haematol. 97, 13 (1997).10.1159/000203655
17.Lee-Thedieck, C. and Spatz, J.P.: Biophysical regulation of hematopoietic stem cells. Biomater. Sci. 2, 1548 (2014).10.1039/C4BM00128A
18.Nelson, M.R. and Roy, K.: Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. J. Mater. Chem. B 4, 3490 (2016).10.1039/C5TB02644J
19.Walasek, M.A., van Os, R., and de Haan, G.: Hematopoietic stem cell expansion: challenges and opportunities. Ann. N. Y. Acad. Sci. 1266, 138 (2012).10.1111/j.1749-6632.2012.06549.x
20.Dombret, H. and Gardin, C.: An update of current treatments for adult acute myeloid leukemia. Blood 127, 53 (2016).10.1182/blood-2015-08-604520
21.Nombela-Arrieta, C. and Isringhausen, S.: The role of the bone marrow stromal compartment in the hematopoietic response to microbial infections. Front. Immunol. 7, 689 (2016).
22.Knight, A.: Animal experiments scrutinised: systematic reviews demonstrate poor human clinical and toxicological utility. Altex 24, 320 (2007).10.14573/altex.2007.4.320
23.Törnqvist, E., Annas, A., Granath, B., Jalkesten, E., Cotgreave, I., and Öberg, M.: Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS ONE 9, e101638 (2014).10.1371/journal.pone.0101638
24.Choi, J.S., Mahadik, B.P., and Harley, B.A.C.: Engineering the hematopoietic stem cell niche: frontiers in biomaterial science. Biotechnol. J. 10, 1529 (2015).10.1002/biot.201400758
25.Mendez-Ferrer, S., Michurina, T.V., Ferraro, F., Mazloom, A.R., Macarthur, B.D., Lira, S.A., Scadden, D.T., Ma'ayan, A., Enikolopov, G.N., and Frenette, P.S.: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829 (2010).10.1038/nature09262
26.Kiernan, J., Damien, P., Monaghan, M., Shorr, R., McIntyre, L., Fergusson, D., Tinmouth, A., and Allan, D.: Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review. Transfus. Med. Rev. 31, 173 (2017).10.1016/j.tmrv.2016.12.004
27.Pineault, N. and Abu-Khader, A.: Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43, 498 (2015).10.1016/j.exphem.2015.04.011
28.Brandrup, J., Immergut, E.H., and Grulke, E.A.: Polymer Handbook, 4th ed. John Wiley and Sons: New York, 1999).
29.Muth, C.A., Steinl, C., Klein, G., and Lee-Thedieck, C.: Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PLoS ONE 8, e54778 (2013).10.1371/journal.pone.0054778
30.Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677 (2006).10.1016/j.cell.2006.06.044
31.Lee-Thedieck, C. and Spatz, J.P.: Artificial niches: biomimetic materials for hematopoietic stem cell culture. Macromol. Rapid Commun. 33, 1432 (2012).10.1002/marc.201200219
32.Kumar, S.S., Hsiao, J.H., Ling, Q.D., Dulinska-Molak, I., Chen, G., Chang, Y., Chang, Y., Chen, Y.H., Chen, D.C., Hsu, S.T., and Higuchi, A.: The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials 34, 7632 (2013).10.1016/j.biomaterials.2013.07.002
33.Zhang, C.C. and Lodish, H.F.: Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105, 4314 (2005).10.1182/blood-2004-11-4418
34.Zhou, Y., Chen, H., Li, H., and Wu, Y.: 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. J. Cell. Mol. Med. 21, 1073 (2017).10.1111/jcmm.12946
35.Rodling, L., Schwedhelm, I., Kraus, S., Bieback, K., Hansmann, J., and Lee-Thedieck, C.: 3D models of the hematopoietic stem cell niche under steady-state and active conditions. Sci. Rep. 7, 4625 (2017).10.1038/s41598-017-04808-0
36.Cook, M.M., Futrega, K., Osiecki, M., Kabiri, M., Rice, A., Atkinson, K., Brooke, G., and Doran, M.: Micromarrows—three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng. Part C 18, 319 (2012).10.1089/ten.tec.2011.0159
37.Costa, E.C., de Melo-Diogo, D., Moreira, A.F., Carvalho, M.P., and Correia, I.J.: Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol. J. 13, 112 (2018).10.1002/biot.201700417
38.Salamanna, F., Contartese, D., Maglio, M., and Fini, M.: A systematic review on in vitro 3D bone metastases models: a new horizon to recapitulate the native clinical scenario? Oncotarget 7, 4480344820 (2016).10.18632/oncotarget.8394
39.Sitarski, A.M., Fairfield, H., Falank, C., and Reagan, M.R.: 3d tissue engineered in vitro models of cancer in bone. ACS. Biomater. Sci. Eng. 4, 324 (2018).10.1021/acsbiomaterials.7b00097
40.Necas, J., Bartosikova, L., Brauner, P., and Kolar, J.: Hyaluronic acid (hyaluronan): a review. Vet. Med. 53, 397 (2008).10.17221/1930-VETMED
41.Fairbanks, B.D., Singh, S.P., Bowman, C.N., and Anseth, K.S.: Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44, 2444 (2011).10.1021/ma200202w
42.Zhang, J., Skardal, A., and Prestwich, G.D.: Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials 29, 4521 (2008).
43.Kharkar, P.M., Kiick, K.L., and Kloxin, A.M.: Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42, 7335 (2013).
44.Cheng, F.R., Su, T., Cao, J., Luo, X.L., Li, L., Pu, Y., and He, B.: Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an “on demand” drug release system. J. Mater. Chem. B 6, 2258 (2018).
45.Madl, C.M., LeSavage, B.L., Dewi, R.E., Dinh, C.B., Stowers, R.S., Khariton, M., Lampe, K.J., Nguyen, D., Chaudhuri, O., Enejder, A., and Heilshorn, S.C.: Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233 (2017).
46.Henderson, T.M.A., Ladewig, K., Haylock, D.N., McLean, K.M., and O'Connor, A.J.: Cryogels for biomedical applications. J. Mater. Chem. B 1, 2682 (2013).10.1039/c3tb20280a
47.Raic, A., Rodling, L., Kalbacher, H., and Lee-Thedieck, C.: Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35, 929 (2014).
48.Ferreira, M.S., Jahnen-Dechent, W., Labude, N., Bovi, M., Hieronymus, T., Zenke, M., Schneider, R.K., and Neuss, S.: Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33, 6987 (2012).
49.Kotha, S.S., Hayes, B.J., Phong, K.T., Redd, M.A., Bomsztyk, K., Ramakrishnan, A., Torok-Storb, B., and Zheng, Y.: Engineering a multicellular vascular niche to model hematopoietic cell trafficking. Stem Cell. Res. Ther. 9, 77 (2018).
50.Sieh, S., Lubik, A.A., Clements, J.A., Nelson, C.C., and Hutmacher, D.W.: Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis 6, 181 (2010).10.4161/org.6.3.12041
51.Bello, A.B., Park, H., and Lee, S.H.: Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater. 72, 1 (2018).
52.Torisawa, Y.S., Spina, C.S., Mammoto, T., Mammoto, A., Weaver, J.C., Tat, T., Collins, J.J., and Ingber, D.E.: Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11, 663 (2014).10.1038/nmeth.2938
53.Reinisch, A., Hernandez, D.C., Schallmoser, K., and Majeti, R.: Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nat. Protoc. 12, 2169 (2017).
54.Riether, C., Schurch, C.M., and Ochsenbein, A.F.: Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 22, 187 (2015).10.1038/cdd.2014.89
55.Stieglitz, E. and Loh, M.L.: Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 4, 270 (2013).
56.Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645 (1994).
57.Brenner, A.K., Nepstad, I., and Bruserud, Ø.: Mesenchymal stem cells support survival and proliferation of primary human acute myeloid leukemia cells through heterogeneous molecular mechanisms. Front. Immunol. 8, 106 (2017).
58.Schepers, K., Pietras, E.M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., Wagers, A.J., Hsiao, E.C., and Passegue, E.: Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285 (2013).10.1016/j.stem.2013.06.009
59.Jacamo, R., Chen, Y., Wang, Z., Ma, W., Zhang, M., Spaeth, E.L., Wang, Y., Battula, V.L., Mak, P.Y., Schallmoser, K., Ruvolo, P., Schober, W.D., Shpall, E.J., Nguyen, M.H., Strunk, D., Bueso-Ramos, C.E., Konoplev, S., Davis, R.E., Konopleva, M., and Andreeff, M.: Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-kappaB mediates chemoresistance. Blood 123, 2691 (2014).10.1182/blood-2013-06-511527
60.Saito, Y., Uchida, N., Tanaka, S., Suzuki, N., Tomizawa-Murasawa, M., Sone, A., Najima, Y., Takagi, S., Aoki, Y., Wake, A., Taniguchi, S., Shultz, L.D., and Ishikawa, F.: Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275 (2010).10.1038/nbt.1607
61.Cook, G.J., and Pardee, T.S.: Animal models of leukemia: any closer to the real thing? Cancer Metastasis Rev. 32, 63 (2013).10.1007/s10555-012-9405-5 Jong, M., and Maina, T.: Of mice and humans: are they the same?–Implications in cancer translational research. J. Nucl. Med. 51, 501 (2010).10.2967/jnumed.109.065706
63.Demetrius, L.: Of mice and men. EMBO Rep. 6, S39 (2005).
64.Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., Nakamura, R., Tanaka, T., Tomiyama, H., Saito, N., Fukata, M., Miyamoto, T., Lyons, B., Ohshima, K., Uchida, N., Taniguchi, S., Ohara, O., Akashi, K., Harada, M., and Shultz, L.D.: Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315 (2007).10.1038/nbt1350
65.Cogle, C.R., Goldman, D.C., Madlambayan, G.J., Leon, R.P., Masri, A.A., Clark, H.A., Asbaghi, S.A., Tyner, J.W., Dunlap, J., Fan, G., Kovacsovics, T., Liu, Q., Meacham, A., Hamlin, K.L., Hromas, R.A., Scott, E.W., and Fleming, W.H.: Functional Integration of Acute Myeloid Leukemia into the Vascular Niche. Leukemia 28, 1978 (2014).
66.Bray, L.J., Binner, M., Korner, Y., von Bonin, M., Bornhauser, M., and Werner, C.: A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche. Haematologica 102, 1215 (2017).10.3324/haematol.2016.157883
67.Bruce, A., Evans, R., Mezan, R., Shi, L., Moses, B.S., Martin, K.H., Gibson, L.F., and Yang, Y.: Three-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS ONE 10, e0140506 (2015).10.1371/journal.pone.0140506
68.Trimarco, V., Ave, E., Facco, M., Chiodin, G., Frezzato, F., Martini, V., Gattazzo, C., Lessi, F., Giorgi, C.A., Visentin, A., Castelli, M., Severin, F., Zambello, R., Piazza, F., Semenzato, G., and Trentin, L.: Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival. Oncotarget 6, 42130 (2015).
69.Tavor, S., Petit, I., Porozov, S., Avigdor, A., Dar, A., Leider-Trejo, L., Shemtov, N., Deutsch, V., Naparstek, E., Nagler, A., and Lapidot, T.: CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817 (2004).10.1158/0008-5472.CAN-03-3693
70.Mills, S.C., Goh, P.H., Kudatsih, J., Ncube, S., Gurung, R., Maxwell, W., and Mueller, A.: Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells. Cell. Signal. 28, 316 (2016).10.1016/j.cellsig.2016.01.006
71.Cho, B.-S., Kim, H.-J., and Konopleva, M.: Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J. Intern. Med. 32, 248 (2017).10.3904/kjim.2016.244
72.Liou, A., Delgado-Martin, C., Teachey, D.T., and Hermiston, M.L.: The CXCR4/CXCL12 axis mediates chemotaxis, survival, and chemoresistance in t-cell acute lymphoblastic leukemia. Blood 124, 3629 (2014).
73.Weisberg, E., Azab, A.K., Manley, P.W., Kung, A.L., Christie, A.L., Bronson, R., Ghobrial, I.M., and Griffin, J.D.: Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib: potentiation of nilotinib by CXCR4 antagonist. Leukemia 26, 985 (2012).10.1038/leu.2011.360
74.Weisberg, E.L., Sattler, M., Azab, A.K., Eulberg, D., Kruschinski, A., Manley, P.W., Stone, R., and Griffin, J.D.: Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition. Oncotarget 8, 109973 (2017).10.18632/oncotarget.22409
75.Shen, Z.H., Zeng, D.F., Wang, X.Y., Ma, Y.Y., Zhang, X., and Kong, P.Y.: Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds. Oncol. Lett. 12, 3278 (2016).10.3892/ol.2016.5042
76.Blanco, T.M., Mantalaris, A., Bismarck, A., and Panoskaltsis, N.: The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials 31, 2243 (2010).
77.Favreau, A.J., Vary, C.P.H., Brooks, P.C., and Sathyanarayana, P.: Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia. Cancer Med. 3, 265 (2014).
78.Shin, J.W. and Mooney, D.J.: Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proc. Natl. Acad. Sci. USA 113, 12126 (2016).
79.Vu, T.T., Lim, C., and Lim, M.: Characterization of leukemic cell behaviors in a soft marrow mimetic alginate hydrogel. J. Biomed. Mater. Res. B Appl. Biomater. 100, 1980 (2012).
80.Gupta, G.P. and Massagué, J.: Cancer metastasis: building a framework. Cell 127, 679 (2006).10.1016/j.cell.2006.11.001
81.Fidler, I.J.: The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat. Rev. Cancer 3, 453 (2003).10.1038/nrc1098
82.Macedo, F., Ladeira, K., Pinho, F., Saraiva, N., Bonito, N., Pinto, L., and Goncalves, F.: Bone metastases: an overview. Oncol. Rev. 11, 321 (2017).
83.Massagué, J. and Obenauf, A.C.: Metastatic colonization by circulating tumour cells. Nature 529, 298 (2016).
84.Peitzsch, C., Tyutyunnykova, A., Pantel, K., and Dubrovska, A.: Cancer stem cells: the root of tumor recurrence and metastases, Semin. Cancer Biol. 44, 10 (2017).
85.Obenauf, A.C. and Massagué, J.: Surviving at a distance: organ-specific metastasis. Trends. Cancer. 1, 76 (2015).10.1016/j.trecan.2015.07.009
86.Chambers, A., Groom, A., and MacDonald, I.: Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563ā (2002).
87.Roodman, G.D. and Silbermann, R.: Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey. Rep. 4, 1 (2015).
88.Sitarski, A.M., Fairfield, H., Falank, C., and Reagan, M.R.: 3D tissue engineered in vitro models of cancer in bone. ACS BACS Biomater Sci. Eng. 4, 324 (2017).
89.Butcher, D.T., Alliston, T., and Weaver, V.M.: A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108 (2009).
90.Kang, Y., Siegel, P.M., Shu, W., Drobnjak, M., Kakonen, S.M., Cordón-Cardo, C., Guise, T.A., and Massagué, J.: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537 (2003).10.1016/S1535-6108(03)00132-6
91.Shiozawa, Y., Pedersen, E.A., Havens, A.M., Jung, Y., Mishra, A., Joseph, J., Kim, J.K., Patel, L.R., Ying, C., Ziegler, A.M., Pienta, M.J., Song, J., Wang, J., Loberg, R.D., Krebsbach, P.H., Pienta, K.J., and Taichman, R.S.: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298 (2011).10.1172/JCI43414
92.Insua-Rodríguez, J., and Oskarsson, T.: The extracellular matrix in breast cancer. Adv. Drug Del. Rev. 97, 41 (2016).
93.Nath, S. and Devi, G.R.: Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol. Ther. 163, 94 (2016).
94.Xu, X., Farach-Carson, M.C., and Jia, X.: Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol. Adv. 32, 1256 (2014).
95.Pan, T., Fong, E.L., Martinez, M., Harrington, D.A., Lin, S.-H., Farach-Carson, M.C., and Satcher, R.L.: Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Lett. 365, 89 (2015).10.1016/j.canlet.2015.05.019
96.Kwon, H., Kim, H.J., Rice, W.L., Subramanian, B., Park, S.H., Georgakoudi, I., and Kaplan, D.L.: Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J. Tissue Eng. Regen. Med. 4, 590 (2010).10.1002/term.268
97.Cox, R.F., Jenkinson, A., Pohl, K., O'Brien, F.J., and Morgan, M.P.: Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment. PLoS ONE 7, e41679 (2012).10.1371/journal.pone.0041679
98.Fitzgerald, K.A., Guo, J., Raftery, R.M., Castaño, I.M., Curtin, C.M., Gooding, M., Darcy, R., O'Brien, F.J., and O'Driscoll, C.M.: Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int. J. Pharm. 511, 1058 (2016).10.1016/j.ijpharm.2016.07.079
99.Marlow, R. and Dontu, G.: Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures. In Mammary Stem Cells, del Mar Vivanco, Maria, ed., Humana Press: New York, 2015; p. 213.
100.Dhurjati, R., Krishnan, V., Shuman, L.A., Mastro, A.M., and Vogler, E.A.: Metastatic breast cancer cells colonize and degrade three-dimensional osteoblastic tissue in vitro. Clin. Exp. Metastasis 25, 741 (2008).10.1007/s10585-008-9185-z
101.Krishnan, V., Vogler, E.A., Sosnoski, D.M., and Mastro, A.M.: In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J. Cell. Physiol. 229, 453 (2014).10.1002/jcp.24464
102.Bersini, S., Jeon, J.S., Dubini, G., Arrigoni, C., Chung, S., Charest, J.L., Moretti, M., and Kamm, R.D.: A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454 (2014).
103.Campbell, T., Williams, C., Ivanova, O., and Garrett, B.: Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC (2011).
104.Patra, S. and Young, V.: A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem. Biophys. 74, 93 (2016).10.1007/s12013-016-0730-0
105.Arrigoni, C., Gilardi, M., Bersini, S., Candrian, C., and Moretti, M.: Bioprinting and organ-on-chip applications towards personalized medicine for bone diseases. Stem Cell Rev. 13, 407 (2017).
106.Temple, J.P., Hutton, D.L., Hung, B.P., Huri, P.Y., Cook, C.A., Kondragunta, R., Jia, X., and Grayson, W.L.: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 102, 4317 (2014).
107.Chia, H.N. and Wu, B.M.: Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015).
108.Groll, J., Boland, T., Blunk, T., Burdick, J.A., Cho, D.-W., Dalton, P.D., Derby, B., Forgacs, G., Li, Q., and Mironov, V.A.: Biofabrication: reappraising the definition of an evolving field. Biofabrication. 8, 013001 (2016).10.1088/1758-5090/8/1/013001
109.Gao, G., Schilling, A.F., Yonezawa, T., Wang, J., Dai, G., and Cui, X.: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9, 1304 (2014).
110.Catros, S., Fricain, J.-C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., Lebraud, E., Desbat, B., Amédée, J., and Guillemot, F.: Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 3, 025001 (2011).10.1088/1758-5082/3/2/025001
111.Chang, C.-H., Lin, C.-Y., Liu, F.-H., Chen, M.H.-C., Lin, C.-P., Ho, H.-N., and Liao, Y.-S.: 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity. PLoS ONE 10, e0143713 (2015).
112.Wüst, S., Godla, M.E., Müller, R., and Hofmann, S.: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10, 630 (2014).10.1016/j.actbio.2013.10.016
113.Hwang, K.-S., Choi, J.-W., Kim, J.-H., Chung, H.Y., Jin, S., Shim, J.-H., Yun, W.-S., Jeong, C.-M., and Huh, J.-B.: Comparative efficacies of collagen-based 3D printed PCL/PLGA/β-TCP composite block bone grafts and biphasic calcium phosphate bone substitute for bone regeneration. Materials (Basel) 10, 421 (2017).10.3390/ma10040421
114.Alluri, R., Jakus, A., Bougioukli, S., Pannell, W., Sugiyama, O., Tang, A., Shah, R., and Lieberman, J.R.: 3D printed hyperelastic “bone” scaffolds and regional gene therapy: a novel approach to bone healing. J. Biomed. Mater. Res. A 106, 1104 (2018).
115.Zhang, W., Lian, Q., Li, D., Wang, K., Hao, D., Bian, W., He, J., and Jin, Z.: Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. BioMed Res. Int. 2014, 1 (2014).
116.Zhu, W., Xu, C., Ma, B.-P., Zheng, Z.-B., Li, Y.-L., Ma, Q., Wu, G.-L., and Weng, X.-S.: Three-dimensional printed scaffolds with gelatin and platelets enhance in vitro preosteoblast growth behavior and the sustained-release effect of growth factors. Chin. Med. J. 129, 2576 (2016).10.4103/0366-6999.192770
117.Murphy, S.V. and Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).10.1038/nbt.2958
118.Adepu, S., Dhiman, N., Laha, A., Sharma, C.S., Ramakrishna, S., and Khandelwal, M.: Three-dimensional bioprinting for bone tissue regeneration. Curr. Opin. Biomed. Eng. 2, 22 (2017).10.1016/j.cobme.2017.03.005
119.Peng, W., Unutmaz, D., and Ozbolat, I.T.: Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 34, 722 (2016).10.1016/j.tibtech.2016.05.013
120.Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A., and Dokmeci, M.R.: Bioinks for 3D bioprinting: an overview. Biomater. Sci 6, 915 (2018).
121.Cui, H., Zhu, W., Nowicki, M., Zhou, X., Khademhosseini, A., and Zhang, L.G.: Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioactive factors into architectural design. Adv. Healthc. Mater. 5, 2174 (2016).10.1002/adhm.201600505
122.Hospodiuk, M., Dey, M., Sosnoski, D., and Ozbolat, I.T.: The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35, 217 (2017).10.1016/j.biotechadv.2016.12.006
123.Jungst, T., Smolan, W., Schacht, K., Scheibel, T., and Groll, J.: Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 116, 1496 (2016).10.1021/acs.chemrev.5b00303
124.Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., and Atala, A.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312 (2016).10.1038/nbt.3413
125.Liu, W., Zhang, Y.S., Heinrich, M.A., De Ferrari, F., Jang, H.L., Bakht, S.M., Alvarez, M.M., Yang, J., Li, Y.-C., Trujillo-de Santiago, G., Miri, A.K., Zhu, K., Khoshakhlagh, P., Prakash, G., Cheng, H., Guan, X., Zhong, Z., Ju, J., Zhu, G.H., Jin, X., Shin, S.R., Dokmeci, M.R., and Khademhosseini, A.: Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29, 1604630 (2017).10.1002/adma.201604630
126.Zhou, X., Castro, N.J., Zhu, W., Cui, H., Aliabouzar, M., Sarkar, K., and Zhang, L.G.: Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Sci. Rep. 6, 1 (2016).
127.Braham, M.V., Ahlfeld, T., Akkineni, A.R., Minnema, M.C., Dhert, W.J., Öner, F.C., Robin, C., Lode, A., Gelinsky, M., and Alblas, J.: Endosteal and perivascular subniches in a 3D bone marrow model for multiple myeloma. Tissue Eng. Part C. Methods 24, 300 (2018).10.1089/ten.tec.2017.0467


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed