Hostname: page-component-7d8f8d645b-xs5cw Total loading time: 0 Render date: 2023-05-30T01:46:03.209Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Tuning kinetic competitions to traverse the rich structural space of organic semiconductor thin films

Published online by Cambridge University Press:  30 July 2015

Anna M. Hiszpanski*
Department of Chemical and Biological Engineering, Princeton University, Engineering Quadrangle, A-214, Princeton, New Jersey 08544, USA
Petr P. Khlyabich
Department of Chemical and Biological Engineering, Princeton University, Engineering Quadrangle, A-214, Princeton, New Jersey 08544, USA
Yueh-Lin Loo*
Department of Chemical and Biological Engineering, Princeton University, Engineering Quadrangle, A-214, Princeton, New Jersey 08544, USA
Address all correspondence to Anna M. Hiszpanski and Yueh-Lin Loo
Address all correspondence to Anna M. Hiszpanski and Yueh-Lin Loo
Get access


The chemical diversity of organic semiconductors coupled with the kinetic nature of film formation make it challenging to tune the structure of active-layer thin films in organic electronics across multiple length scales. We review techniques to tune aspects of film structure within a framework that accounts for the competition between the time available for structural development and the time required by the organic semiconductors to order, defined by a dimensionless time, τ, that describes the ratio of these two quantities. By considering these two competing time scales, we propose general guidelines to tune the film structure accordingly.

Polymers/Soft Matter Prospective Articles
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Hiszpanski, A.M. and Loo, Y.-L.: Directing the film structure of organic semiconductors via post-deposition processing for transistor and solar cell applications. Energy Environ. Sci. 7, 592 (2014).CrossRefGoogle Scholar
2.Pfattner, R., Mas-Torrent, M., Bilotti, I., Brillante, A., Milita, S., Liscio, F., Biscarini, F., Marszalek, T., Ulanski, J., Nosal, A., Gazicki-Lipman, M., Leufgen, M., Schmidt, G., Molenkamp, L.W., Laukhin, V., Veciana, J., and Rovira, C.: High-performance single crystal organic field-effect transistors based on two Dithiophene-tetrathiafulvalene (DT-TTF) polymorphs. Adv. Mater. 22, 4198 (2010).CrossRefGoogle ScholarPubMed
3.Jiang, H., Yang, X., Cui, Z., Liu, Y., Li, H., Hu, W., Liu, Y., and Zhu, D.: Phase dependence of single crystalline transistors of tetrathiafulvalene. Appl. Phys. Lett. 91, 123505 (2007).CrossRefGoogle Scholar
4.Matsukawa, T., Yoshimura, M., Sasai, K., Uchiyama, M., Yamagishi, M., Tominari, Y., Takahashi, Y., Takeya, J., Kitaoka, Y., Mori, Y., and Sasaki, T.: Growth of thin rubrene single crystals from 1-propanol solvent. J. Cryst. Growth 312, 310 (2010).CrossRefGoogle Scholar
5.Hiszpanski, A.M., Baur, R.M., Kim, B., Tremblay, N.J., Nuckolls, C., Woll, A.R., and Loo, Y.-L.: Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing. J. Am. Chem. Soc. 136, 15749 (2014).CrossRefGoogle Scholar
6.Stevens, L.A., Goetz, K.P., Fonari, A., Shu, Y., Williamson, R.M., Bredas, J.-L., Coropceanu, V., Jurchescu, O.D., and Collis, G.E.: Temperature-mediated polymorphism in molecular crystals: the impact on crystal packing and charge transport. Chem. Mater. 27, 112 (2015).CrossRefGoogle Scholar
7.Park, J., Keum, C.-M., Kim, J.-H., Lee, S.-D., Payne, M., Petty, M., Anthony, J.E., and Bae, J.-H.: Photo-assisted molecular engineering in solution-processed organic thin-film transistors with a blended semiconductor for high mobility anisotropy. Appl. Phys. Lett. 102, 013306 (2013).CrossRefGoogle Scholar
8.Fischer, F.S.U., Tremel, K., Sommer, M., Crossland, E.J.C., and Ludwigs, S.: Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields. Nanoscale 4, 2138 (2012).CrossRefGoogle ScholarPubMed
9.Hiszpanski, A.M., Lee, S.S., Wang, H., Woll, A.R., Nuckolls, C., and Loo, Y.-L.: Post-deposition processing methods to induce preferential orientation in contorted hexabenzocoronene thin films. ACS Nano 7, 294 (2013).CrossRefGoogle ScholarPubMed
10.Hosokawa, Y., Misaki, M., Yamamoto, S., Torii, M., Ishida, K., and Ueda, Y.: Molecular orientation and anisotropic carrier mobility in poorly soluble polythiophene thin films. Appl. Phys. Lett. 100, 203305 (2012).CrossRefGoogle Scholar
11.Biniek, L., Leclerc, N., Heiser, T., Bechara, R., and Brinkmann, M.: large scale alignment and charge transport anisotropy of pBTTT films oriented by high temperature rubbing. Macromolecules 46, 4014 (2013).CrossRefGoogle Scholar
12.Tremel, K., Fischer, F.S.U., Kayunkid, N., Di Pietro, R., Tkachov, R., Kiriy, A., Neher, D., Ludwigs, S., and Brinkmann, M.: Charge transport anisotropy in highly oriented thin films of the acceptor polymer P(NDI2OD-T2). Adv. Energy Mater. 4, 1301659 (2014).CrossRefGoogle Scholar
13.Lee, S.S., Kim, C.S., Gomez, E.D., Purushothaman, B., Toney, M.F., Wang, C., Hexemer, A., Anthony, J.E., and Loo, Y.-L.: Controlling nucleation and crystallization in solution-processed organic semiconductors for thin-film transistors. Adv. Mater. 21, 3605 (2009).CrossRefGoogle Scholar
14.Wei Chou, K., Ullah Khan, H., Niazi, M.R., Yan, B., Li, R., Payne, M.M., Anthony, J.E., Smilgies, D.-M., and Amassian, A.: Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors. J. Mater. Chem. C 2, 5681 (2014).CrossRefGoogle Scholar
15.Mukherjee, S., Proctor, C.M., Tumbleston, J.R., Bazan, G.C., Nguyen, T.-Q., and Ade, H.: Importance of domain purity and molecular packing in efficient solution-processed small-molecule solar cells. Adv. Mater. 27, 1105 (2015).CrossRefGoogle Scholar
16.Zhang, L., Liu, F., Diao, Y., Marsh, H.S., Colella, N.S., Jayaraman, A., Russell, T.P., Mannsfeld, S.C.B., and Briseno, A.L.: The good host: formation of discrete one-dimensional fullerene “channels” in well-ordered Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) oligomers. J. Am. Chem. Soc. 136, 18120 (2014).CrossRefGoogle ScholarPubMed
17.Park, S.K., Jackson, T.N., Anthony, J.E., and Mourey, D.A.: High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl. Phys. Lett. 91, 063514 (2007).CrossRefGoogle Scholar
18.Virkar, A.A., Mannsfeld, S., Bao, Z., and Stingelin, N.: Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv. Mater. 22, 3857 (2010).CrossRefGoogle ScholarPubMed
19.Ling, M.M. and Bao, Z.: Thin film deposition, patterning, and printing in organic thin film transistors. Chem. Mater. 16, 4824 (2004).CrossRefGoogle Scholar
20.Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle Scholar
21.Rand, B.P. and Richter, H.: Organic Solar Cells: Fundamentals, Devices, and Upscaling, 1st ed. (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2014).CrossRefGoogle Scholar
22.Yuan, Y., Giri, G., Ayzner, A.L., Zoombelt, A.P., Mannsfeld, S.C.B., Chen, J., Nordlund, D., Toney, M.F., Huang, J., and Bao, Z.: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014).CrossRefGoogle ScholarPubMed
23.Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., Becerril, H.A., Aspuru-Guzik, A., Toney, M.F., and Bao, Z.: Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504 (2011).CrossRefGoogle ScholarPubMed
24.Kim, J.B., Allen, K., Oh, S.J., Lee, S., Toney, M.F., Kim, Y.S., Kagan, C.R., Nuckolls, C., and Loo, Y.-L.: Small-molecule thiophene-C60 dyads as compatibilizers in inverted polymer solar cells. Chem. Mater. 22, 5762 (2010).CrossRefGoogle Scholar
25.Diao, Y., Shaw, L., Bao, Z., and Mannsfeld, S.C.B.: Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145 (2014).CrossRefGoogle Scholar
26.He, T., Stolte, M., Burschka, C., Hansen, N.H., Musiol, T., Kälblein, D., Pflaum, J., Tao, X., Brill, J., and Würthner, F.: Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 6, 5954 (2015).CrossRefGoogle Scholar
27.Schneider, J.A., Black, H., Lin, H.-P., and Perepichka, D.F.: Polymorphism in new thienothiophene–thiazolothiazole organic semiconductors. Chem Phys Chem 16, 1102 (2015).CrossRefGoogle ScholarPubMed
28.Lee, J.Y., Roth, S., and Park, Y.W.: Anisotropic field effect mobility in single crystal pentacene. Appl. Phys. Lett. 88, 252106 (2006).CrossRefGoogle Scholar
29.Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., and Rogers, J.A.: Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644 (2004).CrossRefGoogle ScholarPubMed
30.Mattheus, C.C., Dros, A.B., Baas, J., Oostergetel, G.T., Meetsma, A., de Boer, J.L., and Palstra, T.T.M.: Identification of polymorphs of pentacene. Synth. Met. 138, 475 (2003).CrossRefGoogle Scholar
31.Schweicher, G., Paquay, N., Amato, C., Resel, R., Koini, M., Talvy, S., Lemaur, V., Cornil, J., Geerts, Y., and Gbabode, G.: Toward single crystal thin films of terthiophene by directional crystallization using a thermal gradient. Cryst. Growth Des. 11, 3663 (2011).CrossRefGoogle Scholar
32.Schiefer, S., Huth, M., Dobrinevski, A., and Nickel, B.: Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129, 10316 (2007).CrossRefGoogle ScholarPubMed
33.Giri, G., Li, R., Smilgies, D.-M., Li, E.Q., Diao, Y., Lenn, K.M., Chiu, M., Lin, D.W., Allen, R., Reinspach, J., Mannsfeld, S.C.B., Thoroddsen, S.T., Clancy, P., Bao, Z., and Amassian, A.: One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films. Nat. Commun. 5, 3573 (2014).CrossRefGoogle ScholarPubMed
34.Hamilton, B.D., Ha, J.-M., Hillmyer, M.A., and Ward, M.D.: Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc. Chem. Res. 45, 414 (2011).CrossRefGoogle ScholarPubMed
35.Beiner, M., Rengarajan, G.T., Pankaj, S., Enke, D., and Steinhart, M.: Manipulating the crystalline state of pharmaceuticals by nanoconfinement. Nano Lett. 7, 1381 (2007).CrossRefGoogle ScholarPubMed
36.Diao, Y., Lenn, K.M., Lee, W.Y., Blood-Forsythe, M.A., Xu, J., Mao, Y.S., Kim, Y., Reinspach, J.A., Park, S., Aspuru-Guzik, A., Xue, G., Clancy, P., Bao, Z.N., and Mannsfeld, S.C.B.: Understanding polymorphism in organic semiconductor thin films through nanoconfinement. J. Am. Chem. Soc. 136, 17046 (2014).CrossRefGoogle ScholarPubMed
37.Diao, Y., Whaley, K.E., Helgeson, M.E., Woldeyes, M.A., Doyle, P.S., Myerson, A.S., Hatton, T.A., and Trout, B.L.: Gel-induced selective crystallization of polymorphs. J. Am. Chem. Soc. 134, 673 (2012).CrossRefGoogle Scholar
38.Giri, G., Park, S., Vosgueritchian, M., Shulaker, M.M., and Bao, Z.: High-mobility, aligned crystalline domains of TIPS-pentacene with metastable polymorphs through lateral confinement of crystal growth. Adv. Mater. 26, 487 (2014).CrossRefGoogle ScholarPubMed
39.Bouchoms, I.P.M., Schoonveld, W.A., Vrijmoeth, J., and Klapwijk, T.M.: Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates. Synth. Met. 104, 175 (1999).CrossRefGoogle Scholar
40.Fritz, S.E., Martin, S.M., Frisbie, C.D., Ward, M.D., and Toney, M.F.: Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence x-ray diffraction. J. Am. Chem. Soc. 126, 4084 (2004).CrossRefGoogle ScholarPubMed
41.Mannsfeld, S.C.B., Virkar, A., Reese, C., Toney, M.F., and Bao, Z.: Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv. Mater. 21, 2294 (2009).CrossRefGoogle Scholar
42.Yuan, Q., Mannsfeld, S.C.B., Tang, M.L., Toney, M.F., Luening, J., and Bao, Z.: Thin film structure of tetraceno 2,3-b thiophene characterized by grazing incidence x-ray scattering and near-edge x-ray absorption fine structure analysis. J. Am. Chem. Soc. 130, 3502 (2008).CrossRefGoogle Scholar
43.Krauss, T.N., Barrena, E., Zhang, X.N., de Oteyza, D.G., Major, J., Dehm, V., Wuerthner, F., Cavalcanti, L.P., and Dosch, H.: Three-dimensional molecular packing of thin organic films of PTCDI-C-8 determined by surface x-ray diffraction. Langmuir 24, 12742 (2008).CrossRefGoogle Scholar
44.Gbabode, G., Dumont, N., Quist, F., Schweicher, G., Moser, A., Viville, P., Lazzaroni, R., and Geerts, Y.H.: Substrate-induced crystal plastic phase of a discotic liquid crystal. Adv. Mater. 24, 658 (2012).CrossRefGoogle ScholarPubMed
45.Werzer, O., Boucher, N., de Silva, J.P., Gbabode, G., Geerts, Y.H., Konovalov, O., Moser, A., Novak, J., Resel, R., and Sferrazza, M.: Interface induced crystal structures of dioctyl-terthiophene thin films. Langmuir 28, 8530 (2012).CrossRefGoogle ScholarPubMed
46.Lercher, C., Resel, R., Balandier, J.-Y., Niebel, C., Geerts, Y.H., Sferrazza, M., and Gbabode, G.: Effects of temperature on the polymorphism of α,ω-dioctylterthiophene in thin films. J. Cryst. Growth 386, 128 (2014).CrossRefGoogle Scholar
47.Hiszpanski, A.M., Saathoff, J.D., Shaw, L., Wang, H., Kraya, L., Lüttich, F., Brady, M.A., Chabinyc, M.L., Kahn, A., Clancy, P., and Loo, Y.-L.: Halogenation of a nonplanar molecular semiconductor to tune energy levels and bandgaps for electron transport. Chem. Mater. 27, 1892 (2015).CrossRefGoogle Scholar
48.Stingelin-Stutzmann, N., Smits, E., Wondergem, H., Tanase, C., Blom, P., Smith, P., and de Leeuw, D.: Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nat. Mater. 4, 601 (2005).CrossRefGoogle Scholar
49.Chen, W., Qi, D.C., Huang, Y.L., Huang, H., Wang, Y.Z., Chen, S., Gao, X.Y., and Wee, A.T.S.: Molecular orientation dependent energy level alignment at organic−organic heterojunction interfaces. J. Phys. Chem. C 113, 12832 (2009).CrossRefGoogle Scholar
50.Heimel, G., Salzmann, I., Duhm, S., Rabe, J.P., and Koch, N.: Intrinsic surface dipoles control the energy levels of conjugated polymers. Adv. Funct. Mater. 19, 3874 (2009).CrossRefGoogle Scholar
51.Li, L.-H., Kontsevoi, O.Y., and Freeman, A.J.: Orientation-dependent electronic structures and optical properties of the P3HT:PCBM interface: a first-principles GW-BSE study. J. Phys. Chem. C 118, 10263 (2014).CrossRefGoogle Scholar
52.Kitchen, B., Awartani, O., Kline, R.J., McAfee, T., Ade, H., and O'Connor, B.T.: Tuning open-circuit voltage in organic solar cells with molecular orientation. ACS Appl. Mater. Interfaces 7, 13208 (2015).CrossRefGoogle ScholarPubMed
53.Kim, D.H., Park, Y.D., Jang, Y., Yang, H., Kim, Y.H., Han, J.I., Moon, D.G., Park, S., Chang, T., Chang, C., Joo, M., Ryu, C.Y., and Cho, K.: Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors. Adv. Func. Mater. 15, 77 (2005).CrossRefGoogle Scholar
54.Lee, K.S., Smith, T.J., Dickey, K.C., Yoo, J.E., Stevenson, K.J., and Loo, Y.L.: High-resolution characterization of pentacene/polyaniline interfaces in thin-film transistors. Adv. Func. Mater. 16, 2409 (2006).CrossRefGoogle Scholar
55.Yang, H., LeFevre, S.W., Ryu, C.Y., and Bao, Z.: Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents. Appl. Phys. Lett. 90, 172116 (2007).CrossRefGoogle Scholar
56.Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).CrossRefGoogle Scholar
57.Bao, Z., Dodabalapur, A., and Lovinger, A.J.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108 (1996).CrossRefGoogle Scholar
58.Chang, J.F., Sun, B.Q., Breiby, D.W., Nielsen, M.M., Solling, T.I., Giles, M., McCulloch, I., and Sirringhaus, H.: Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 4772 (2004).CrossRefGoogle Scholar
59.DeLongchamp, D.M., Vogel, B.M., Jung, Y., Gurau, M.C., Richter, C.A., Kirillov, O.A., Obrzut, J., Fischer, D.A., Sambasivan, S., Richter, L.J., and Lin, E.K.: Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem. Mater. 17, 5610 (2005).CrossRefGoogle Scholar
60.Dickey, K.C., Anthony, J.E., and Loo, Y.L.: Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv. Mater. 18, 1721 (2006).CrossRefGoogle Scholar
61.Lee, S.S., Tang, S.B., Smilgies, D.-M., Woll, A.R., Loth, M.A., Mativetsky, J.M., Anthony, J.E., and Loo, Y.-L.: Guiding crystallization around bends and sharp corners. Adv. Mater. 24, 2692 (2012).CrossRefGoogle Scholar
62.Lee, S.S., Muralidharan, S., Woll, A.R., Loth, M.A., Li, Z., Anthony, J.E., Haataja, M., and Loo, Y.-L.: Understanding heterogeneous nucleation in binary, solution-processed, organic semiconductor thin films. Chem. Mater. 24, 2920 (2012).CrossRefGoogle Scholar
63.Lindqvist, C., Bergqvist, J., Feng, C.-C., Gustafsson, S., Bäcke, O., Treat, N.D., Bounioux, C., Henriksson, P., Kroon, R., Wang, E., Sanz-Velasco, A., Kristiansen, P.M., Stingelin, N., Olsson, E., Inganäs, O., Andersson, M.R., and Müller, C.: Fullerene nucleating agents: a route towards thermally stable photovoltaic blends. Adv. Energy Mater. 4, 1301437 (2014).CrossRefGoogle Scholar
64.Agostinelli, T., Lilliu, S., Labram, J.G., Campoy-Quiles, M., Hampton, M., Pires, E., Rawle, J., Bikondoa, O., Bradley, D.D.C., Anthopoulos, T.D., Nelson, J., and Macdonald, J.E.: Real-time investigation of crystallization and phase-segregation dynamics in P3HT:PCBM solar cells during thermal annealing. Adv. Funct. Mater. 21, 1701 (2011).CrossRefGoogle Scholar
65.Sreenivas, K., Pol, H.V., and Kumaraswamy, G.: The influence of DMDBS on the morphology and mechanical properties of polypropylene cast films. Polym. Eng. Sci. 51, 2013 (2011).CrossRefGoogle Scholar
66.Treat, N.D., Nekuda Malik, J.A., Reid, O., Yu, L., Shuttle, C.G., Rumbles, G., Hawker, C.J., Chabinyc, M.L., Smith, P., and Stingelin, N.: Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nat. Mater. 12, 628 (2013).CrossRefGoogle Scholar
67.Collins, B.A., Tumbleston, J.R., and Ade, H.: Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J. Phys. Chem. Lett. 2, 3135 (2011).CrossRefGoogle Scholar
68.Mikhnenko, O.V., Azimi, H., Scharber, M., Morana, M., Blom, P.W.M., and Loi, M.A.: Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 5, 6960 (2012).CrossRefGoogle Scholar
69.Shaw, P.E., Ruseckas, A., and Samuel, I.D.W.: Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20, 3516 (2008).CrossRefGoogle Scholar
70.Clarke, T.M. and Durrant, J.R.: Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736 (2010).CrossRefGoogle Scholar
71.Dang, M.T., Hirsch, L., Wantz, G., and Wuest, J.D.: Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-Phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 3734 (2013).CrossRefGoogle ScholarPubMed
72.Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005).CrossRefGoogle Scholar
73.van Bavel, S., Veenstra, S., and Loos, J.: On the importance of morphology control in polymer solar cells. Macromol. Rapid Commun. 31, 1835 (2010).CrossRefGoogle Scholar
74.Vongsaysy, U., Pavageau, B., Wantz, G., Bassani, D.M., Servant, L., and Aziz, H.: Guiding the selection of processing additives for increasing the efficiency of bulk heterojunction polymeric solar cells. Adv. Energy Mater. 4, 1300752 (2014).CrossRefGoogle Scholar
75.Su, Y.-W., Liu, C.-M., Jiang, J.-M., Tsao, C.-S., Cha, H.-C., Jeng, U.S., Chen, H.-L., and Wei, K.-H.: structural evolution of crystalline conjugated polymer/fullerene domains from solution to the solid state in the presence and absence of an additive. J. Phys. Chem. C 119, 3408 (2015).CrossRefGoogle Scholar
76.Etzold, F., Howard, I.A., Forler, N., Cho, D.M., Meister, M., Mangold, H., Shu, J., Hansen, M.R., Müllen, K., and Laquai, F.: The effect of solvent additives on morphology and excited-state dynamics in PCPDTBT:PCBM photovoltaic blends. J. Am. Chem. Soc. 134, 10569 (2012).CrossRefGoogle ScholarPubMed
77.Liao, H.-C., Ho, C.-C., Chang, C.-Y., Jao, M.-H., Darling, S.B., and Su, W.-F.: Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16, 326 (2013).CrossRefGoogle Scholar
78.van der Poll, T.S., Love, J.A., Nguyen, T.-Q., and Bazan, G.C.: Non-basic high-performance molecules for solution-processed organic solar cells. Adv. Mater. 24, 3646 (2012).CrossRefGoogle ScholarPubMed
79.Perez, L.A., Chou, K.W., Love, J.A., van der Poll, T.S., Smilgies, D.-M., Nguyen, T.-Q., Kramer, E.J., Amassian, A., and Bazan, G.C.: Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25, 6380 (2013).CrossRefGoogle ScholarPubMed
80.Graham, K.R., Wieruszewski, P.M., Stalder, R., Hartel, M.J., Mei, J., So, F., and Reynolds, J.R.: Improved performance of molecular bulk-heterojunction photovoltaic cells through predictable selection of solvent additives. Adv. Funct. Mater. 22, 4801 (2012).CrossRefGoogle Scholar
81.Gu, Y., Wang, C., and Russell, T.P.: Multi-length-scale morphologies in PCPDTBT/PCBM bulk-heterojunction solar cells. Adv. Energy Mater. 2, 683 (2012).CrossRefGoogle Scholar
82.Lee, J.K., Ma, W.L., Brabec, C.J., Yuen, J., Moon, J.S., Kim, J.Y., Lee, K., Bazan, G.C., and Heeger, A.J.: Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619 (2008).CrossRefGoogle ScholarPubMed
83.Rogers, J.T., Schmidt, K., Toney, M.F., Bazan, G.C., and Kramer, E.J.: Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc. 134, 2884 (2012).CrossRefGoogle ScholarPubMed
84.Rogers, J.T., Schmidt, K., Toney, M.F., Kramer, E.J., and Bazan, G.C.: Structural order in bulk heterojunction films prepared with solvent additives. Adv. Mater. 23, 2284 (2011).CrossRefGoogle ScholarPubMed
85.Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., and Bazan, G.C.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497 (2007).CrossRefGoogle ScholarPubMed
86.Richter, L.J., DeLongchamp, D.M., Bokel, F.A., Engmann, S., Chou, K.W., Amassian, A., Schaible, E., and Hexemer, A.: In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5, 1400975 (2015).CrossRefGoogle Scholar
87.Treat, N.D., Varotto, A., Takacs, C.J., Batara, N., Al-Hashimi, M., Heeney, M.J., Heeger, A.J., Wudl, F., Hawker, C.J., and Chabinyc, M.L.: Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells. J. Am. Chem. Soc. 134, 15869 (2012).CrossRefGoogle ScholarPubMed
88.Pavlopoulou, E., Kim, C.S., Lee, S.S., Chen, Z., Facchetti, A., Toney, M.F., and Loo, Y.-L.: Tuning the morphology of all-polymer OPVs through altering polymer–solvent interactions. Chem. Mater. 26, 5020 (2014).CrossRefGoogle Scholar
89.Khlyabich, P.P., Rudenko, A.E., Burkhart, B., and Thompson, B.C.: Contrasting performance of donor–acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells. ACS Appl. Mater. Interfaces 7, 2322 (2015).CrossRefGoogle ScholarPubMed
90.Street, R.A., Khlyabich, P.P., Rudenko, A.E., and Thompson, B.C.: Electronic states in dilute ternary blend organic bulk heterojunction solar cells. J. Phys. Chem. C 118, 26569 (2014).CrossRefGoogle Scholar
91.Khlyabich, P.P., Rudenko, A.E., Street, R.A., and Thompson, B.C.: Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 9913 (2014).CrossRefGoogle ScholarPubMed
92.Street, R.A., Davies, D., Khlyabich, P.P., Burkhart, B., and Thompson, B.C.: Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986 (2013).CrossRefGoogle ScholarPubMed
93.Khlyabich, P.P., Burkhart, B., and Thompson, B.C.: Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074 (2012).CrossRefGoogle ScholarPubMed
94.Khlyabich, P.P., Burkhart, B., and Thompson, B.C.: Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534 (2011).CrossRefGoogle Scholar
95.Khlyabich, P.P., Burkhart, B., Rudenko, A.E., and Thompson, B.C.: Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. Polymer 54, 5267 (2013).CrossRefGoogle Scholar
96.Ameri, T., Khoram, P., Min, J., and Brabec, C.J.: Organic ternary solar cells: a review. Adv. Mater. 25, 4245 (2013).CrossRefGoogle Scholar
97.Ameri, T., Khoram, P., Heumuller, T., Baran, D., Machui, F., Troeger, A., Sgobba, V., Guldi, D.M., Halik, M., Rathgeber, S., Scherf, U., and Brabec, C.J.: Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2, 19461 (2014).CrossRefGoogle Scholar
98.Gu, Y., Wang, C., Liu, F., Chen, J., Dyck, O.E., Duscher, G., and Russell, T.P.: Guided crystallization of P3HT in ternary blend solar cell based on P3HT:PCPDTBT:PCBM. Energy Environ. Sci. 7, 3782 (2014).CrossRefGoogle Scholar
99.Agostinelli, T., Lilliu, S., Labram, J.G., Campoy-Quiles, M., Hampton, M., Pires, E., Rawle, J., Bikondoa, O., Bradley, D.D.C., Anthopoulos, T.D., Nelson, J., and Macdonald, J.E.: Real-time investigation of crystallization and phase-segregation dynamics in P3HT:PCBM solar cells during thermal annealing. Adv. Func. Mater. 21, 1701 (2011).CrossRefGoogle Scholar
100.Smilgies, D.-M., Li, R., Giri, G., Chou, K.W., Diao, Y., Bao, Z., and Amassian, A.: Look fast: Crystallization of conjugated molecules during solution shearing probed in-situ and in real time by x-ray scattering. Phys. Status Solidi (RRL) 7, 177 (2013).CrossRefGoogle Scholar
101.Chou, K.W., Yan, B., Li, R., Li, E.Q., Zhao, K., Anjum, D.H., Alvarez, S., Gassaway, R., Biocca, A., Thoroddsen, S.T., Hexemer, A., and Amassian, A.: Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mater. 25, 1923 (2013).CrossRefGoogle Scholar
102.Chou, K.W., Yan, B., Li, R., Li, E.Q., Zhao, K., Anjum, D.H., Alvarez, S., Gassaway, R., Biocca, A., Thoroddsen, S.T., Hexemer, A., and Amassian, A.: Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mater. 25, 1923 (2013).CrossRefGoogle ScholarPubMed
103.Liu, F., Ferdous, S., Schaible, E., Hexemer, A., Church, M., Ding, X., Wang, C., and Russell, T.P.: Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. Adv. Mater. 27, 886 (2015).CrossRefGoogle Scholar
104.Palumbiny, C.M., Liu, F., Russell, T.P., Hexemer, A., Wang, C., and Müller-Buschbaum, P.: The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing. Adv. Mater. 27, 3391 (2015).CrossRefGoogle Scholar
105.Amassian, A., Pozdin, V.A., Li, R., Smilgies, D.-M., and Malliaras, G.G.: Solvent vapor annealing of an insoluble molecular semiconductor. J. Mater. Chem. 20, 2623 (2010).CrossRefGoogle Scholar
106.Gu, X., Gunkel, I., Hexemer, A., Gu, W., and Russell, T.P.: An in situ grazing incidence x-ray scattering study of block copolymer thin films during solvent vapor annealing. Adv. Mater. 26, 273 (2014).CrossRefGoogle Scholar