Skip to main content Accessibility help
×
Home

Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents

  • Marilyn S. Lee (a1), Sergio J. Garibay (a1), Ann M. Ploskonka (a1) and Jared B. DeCoste (a1)

Abstract

Porphyrins absorb light to initiate photocatalytic activity. The complex, asymmetric structures of natural porphyrins such as heme, chlorophyll, and their derivatives hold unique interest. A platform for biosynthesis of porphyrins in Escherichia coli is developed with the aim of producing a variety of porphyrins for examining their photocatalytic properties within a porous material. Bioderived protoporphyrin IX is tethered inside the highly porous metal-organic framework (MOF) NU-1000 via solvent-assisted ligand incorporation. This MOF catalyzes the photocatalytic oxidation of 2-chloroethyl ethyl sulfide with improved performance over an expanded range of the visible spectrum when compared to unmodified NU-1000.

Copyright

Corresponding author

Address all correspondence to Jared B. DeCoste at jared.b.decoste2.civ@mail.mil

References

Hide All
1.Cook, L.P., Brewer, G., and Wong-Ng, W.: Structural aspects of porphyrins for functional materials applications. Crystals (Basel) 7, 223 (2017). https://doi.org/10.3390/cryst7070223.
2.Zhao, M., Ou, S., and Wu, C.-D.: Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Acc. Chem. Res. 47, 11991207 (2014). https://doi.org/10.1021/ar400265x.
3.So, M.C., Wiederrecht, G.P., Mondloch, J.E., Hupp, J.T., and Farha, O.K.: Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 35013510 (2015). https://doi.org/10.1039/C4CC09596K.
4.Ling, P., Lei, J., Zhang, L., and Ju, H.: Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 87, 39573963 (2015). https://doi.org/10.1021/acs.analchem.5b00001.
5.Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.-G., Yeh, C.-Y., Zakeeruddin, S.M., and Gratzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629634 (2011). https://doi.org/10.1126/science.1209688.
6.Mahmood, A., Hu, J.-Y., Xiao, B., Tang, A., Wang, X., and Zhou, E.: Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A. 6, 1676916797 (2018). https://doi.org/10.1039/C8TA06392C.
7.Jurow, M., Schuckman, A.E., Batteas, J.D., and Drain, C.M.: Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254, 22972310 (2010). https://doi.org/10.1016/j.ccr.2010.05.014.
8.Shemin, D. and Russell, C.S.: δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J. Am. Chem. Soc. 75, 48734874 (1953). https://doi.org/10.1021/ja01115a546.
9.Kwon, S.J., de Boer, A.L., Petri, R., and Schmidt-Dannert, C.: High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 48754883 (2003). https://doi.org/10.1128/AEM.69.8.4875-4883.2003.
10.Furuse, K., Fukuoka, M., Kato, H., Horai, T., Kubota, K., Kodama, N., Kusunoki, Y., Takifuji, N., Okunaka, T., and Konaka, C.: A prospective phase ii study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan lung cancer photodynamic therapy study group.J. Clin. Oncol. 11, 18521857 (1993). https://doi.org/10.1200/JCO.1993.11.10.1852.
11.Regula, J., MacRobert, A.J., Gorchein, A., Buonaccorsi, G.A., Thorpe, S.M., Spencer, G.M., Hatfield, A.R., and Bown, S.G.: Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinicacid induced protoporphyrin IX—a pilot study. Gut 36, 6775 (1995). https://doi.org/10.1136/gut.36.1.67.
12.Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R.K.: The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340362 (2011). https://doi.org/10.1039/B915149B.
13.Nielsen, M.T., Madsen, K.M., Seppälä, S., Christensen, U., Riisberg, L., Harrison, S.J., Møller, B.L., and Nørholm, M.H.H.: Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth. Biol. 4, 274282 (2015). https://doi.org/10.1021/sb500055u.
14.Kim, J., Chen, B., Reineke, T.M., Li, H., Eddaoudi, M., Moler, D.B., O'Keeffe, M., and Yaghi, O.M.: Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 82398247 (2001). https://doi.org/10.1021/ja010825o.
15.DeCoste, J.B. and Peterson, G.W.: Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 56955727 (2014). https://doi.org/10.1021/cr4006473.
16.Barea, E., Montoro, C., and Navarro, J.A.R.: Toxic gas removal—metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 54195430 (2014). https://doi.org/10.1039/C3CS60475F.
17.Mondloch, J.E., Katz, M.J., Isley, W.C. III, Ghosh, P., Liao, P., Bury, W., Wagner, G.W., Hall, M.G., DeCoste, J.B., Peterson, G.W., Snurr, R.Q., Cramer, C.J., Hupp, J.T., and Farha, O.K.: Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 14, 512516 (2015). https://doi.org/10.1038/nmat4238.
18.Katz, M.J., Mondloch, J.E., Totten, R.K., Park, J.K., Nguyen, S.T., Farha, O.K., and Hupp, J.T.: Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. Angew. Chem., Int. Ed. 53, 497501 (2014). https://doi.org/10.1002/anie.201307520.
19.Liu, Y., Buru, C.T., Howarth, A.J., Mahle, J.J., Buchanan, J.H., DeCoste, J.B., Hupp, J.T., and Farha, O.K.: Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework. J. Mater. Chem. A 4, 1380913813 (2016). https://doi.org/10.1039/C6TA05903A.
20.Liu, Y., Howarth, A.J., Hupp, J.T., and Farha, O.K.: Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework. Angew. Chem., Int. Ed. 54, 90019005 (2015). https://doi.org/10.1002/anie.201503741.
21.DeRosa, M.: Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351371 (2002). https://doi.org/10.1016/S0010-8545(02)00034-6.
22.Karagiaridi, O., Bury, W., Mondloch, J.E., Hupp, J.T., and Farha, O.K.: Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 53, 45304540 (2014). https://doi.org/10.1002/anie.201306923.
23.Deria, P., Bury, W., Hupp, J.T., and Farha, O.K.: Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem. Commun. 50, 1965 (2014). https://doi.org/10.1039/c3cc48562e.
24.Mondloch, J.E., Bury, W., Fairen-Jimenez, D., Kwon, S., DeMarco, E.J., Weston, M.H., Sarjeant, A.A., Nguyen, S.T., Stair, P.C., Snurr, R.Q., Farha, O.K., and Hupp, J.T.: Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 1029410297 (2013). https://doi.org/10.1021/ja4050828.
25.Howarth, A.J., Buru, C.T., Liu, Y., Ploskonka, A.M., Hartlieb, K.J., McEntee, M., Mahle, J.J., Buchanan, J.H., Durke, E.M., Al-Juaid, S.S., Stoddart, J.F., DeCoste, J.B., Hupp, J.T., and Farha, O.K.: Postsynthetic incorporation of a singlet oxygen photosensitizer in a metal-organic framework for fast and selective oxidative detoxification of sulfur mustard. Chem. – Eur. J. 23, 214218 (2017). https://doi.org/10.1002/chem.201604972.
26.Islamoglu, T., Otake, K., Li, P., Buru, C.T., Peters, A.W., Akpinar, I., Garibay, S.J., and Farha, O.K.: Revisiting the structural homogeneity of NU-1000, a Zr-based metal-organic framework. CrystEngComm 20, 59135918 (2018). https://doi.org/10.1039/C8CE00455B.
27.Neamţu, M., Nădejde, C., Hodoroaba, V.-D., Schneider, R.J., and Panne, U.: Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: synthesis, characterization and photocatalytic application. Appl. Catal., B 232, 553561 (2018). https://doi.org/10.1016/j.apcatb.2018.03.079.
28.Merkel, P.B. and Kearns, D.R.: Radiationless decay of singlet molecular oxygen in solution. Experimental and theoretical study of electronic-to-vibrational energy transfer.J. Am. Chem. Soc. 94, 72447253 (1972). https://doi.org/10.1021/ja00776a003.
Type Description Title
WORD
Supplementary materials

Lee et al. supplementary material
Lee et al. supplementary material 1

 Word (1.3 MB)
1.3 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed