Skip to main content Accessibility help

Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications

  • Natalie P. Holmes (a1), Ben Vaughan (a1) (a2), Evan L. Williams (a3), Renee Kroon (a4) (a5), Mats R. Anderrson (a4) (a5), A.L.David Kilcoyne (a6), Prashant Sonar (a3) (a7), Xiaojing Zhou (a1), Paul C. Dastoor (a1) and Warwick J. Belcher (a1)...
  • Please note a correction has been issued for this article.

Polymer:fullerene nanoparticles (NPs) offer two key advantages over bulk heterojunction (BHJ) films for organic photovoltaics (OPVs), water-processability and potentially superior morphological control. Once an optimal active layer morphology is reached, maintaining this morphology at OPV operating temperatures is key to the lifetime of a device. Here we study the morphology of the PDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}):PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) NP system and then compare the thermal stability of NP and BHJ films to the common poly(3-hexylthiophene) (P3HT): phenyl C61 butyric acid methyl ester (PC61BM) system. We find that material T g plays a key role in the superior thermal stability of the PDPP-TNT:PC71BM system; whereas for the P3HT:PC61BM system, domain structure is critical.

Corresponding author
Address all correspondence to Natalie P. Holmes at
Hide All
1. Wienk, M.M., Turbiez, M., Gilot, J., and Janssen, R.A.J.: Narrow bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv. Mater. 20, 2556 (2008).
2. Li, W., Hendriks, K.H., Furlan, A., Roelofs, W.S.C., Wienk, M.M., and Janssen, R.A.J.: Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J. Am. Chem. Soc. 135, 18942 (2013).
3. Zhou, E., Wei, Q., Yamakawa, S., Zhang, Y., Tajima, K., Yang, C., and Hashimoto, K.: Diketopyrrolopyrrole-based semiconducting polymer for photovoltaic device with photocurrent response wavelengths up to 1.1 µm. Macromolecules 43, 821 (2010).
4. Sonar, P., Singh, S.P., Li, Y., Ooi, Z.-E., Ha, T., Wong, I., Soh, M.S., and Dodabalapur, A.: High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design. Energy Environ. Sci. 4, 2288 (2011).
5. Liu, F., Gu, Y., Jung, J.W., Jo, W.H., and Russell, T.P.: On the morphology of polymer-based photovoltaics. J. Polym. Sci. B: Polym. Phys. 50, 1018 (2012).
6. Holmes, N.P., Ulum, S., Sista, P., Burke, K.B., Wilson, M.G., Stefan, M.C., Zhou, X., Dastoor, P.C., and Belcher, W.J.: The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 128, 369 (2014).
7. Vaughan, B., Williams, E.L., Holmes, N.P., Sonar, P., Dodabalapur, A., Dastoor, P.C., and Belcher, W.J.: Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer. Phys. Chem. Chem. Phys. 16, 2647 (2014).
8. Lindqvist, C., Bergqvist, J., Bäcke, O., Gustafsson, S., Wang, E., Olssen, E., Inganäs, O., Andersson, M.R., and Müller, C.: Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Appl. Phys. Lett. 104, 153301 (2014).
9. Guerrero, A. and Garcia-Belmonte, G.: Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2016).
10. Bertho, S., Janssen, G., Cleij, T.J., Conings, B., Moons, W., Gadisa, A., D'Haen, J., Goovaerts, E., Lutsen, L., Manca, J., and Vanderzande, D.: Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol. Energy Mater. Sol. Cells 92, 753 (2008).
11. Müller, C.: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 27, 2740 (2015).
12. Reese, M.O., Gevorgyan, S.A., Jørgensen, M., Bundgaard, E., Kurtz, S.R., Ginley, D.S., Olson, D.C., Lloyd, M.T., Morvillo, P., Katz, E.A., Elschner, A., Haillant, O., Currier, T.R., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K.R., Trimmel, G., Rath, T., Inganäs, O., Zhang, F., Andersson, M., Tvingstedt, T., Lira-Cantu, M., Laird, D., McGuiness, C., Gowrisankerm, S., Pannone, M., Xiao, M., Hauch, J., Steim, R., DeLongchamp, D.M., Rösch, R., Hoppe, H., Espinosa, N., Urbina, A., Yaman-Uzunoglu, G., Bonekamp, J.-B., van Breemen, A.J.J.M., Girotto, C., Voroshazi, E., and Krebs, F.C.: Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253 (2011).
13. Tamayo, A.B., Walker, B., and Nguyen, T.-Q.: A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J. Phys. Chem. C 112, 11545 (2008).
14. Yamamoto, N.A.D., Payne, M.E., Koehler, M., Facchetti, A., Roman, L.S., and Arias, A.C.: Charge transport model for photovoltaic devices based on printed polymer:fullerene nanoparticles. Sol. Energy Mater. Sol. Cells 141, 171 (2015).
15. Holmes, N.P., Nicolaidis, N., Feron, K., Barr, M., Burke, K.B., Al-Mudhaffer, M., Sista, P., Kilcoyne, A.L.D., Stefan, M.C., Zhou, X., Dastoor, P.C., and Belcher, W.J.: Probing the origin of photocurrent in nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 140, 412 (2015).
16. Williams, E.L., Gorelik, S., Phang, I., Bosman, M., Vijila, C., Subramanian, G.S., Sonar, P., Hobley, J., Singh, S.P., Matsuzaki, H., Furube, A., and Katoh, R.: Nanoscale phase domain structure and associated device performance of organic solar cells based on a diketopyrrolopyrrole polymer. RSC Adv. 3, 20113 (2013).
17. Hendriks, K.H., Heintges, G.H.L., Gevaerts, V.S., Wienk, M.M., and Janssen, R.A.J.: High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. 52, 8341 (2013).
18. Dou, L., Gao, J., Richard, E., You, J., Chen, C.-C., Cha, K.C., He, Y., Li, G., and Yang, Y.: Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 134, 10071 (2012).
19. Li, W., Roelofs, W.S.C., Wienk, M.M., and Janssen, R.A.J.: Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. J. Am. Chem. Soc. 134, 13787 (2012).
20. Dang, M.T., Wantz, G., Bejbouji, H., Urien, M., Dautel, O.J., Vignau, L., and Hirsch, L.: Polymeric solar cells based on P3HT:PCBM: role of the casting solvent. Sol. Energy Mater. Sol. Cells 95, 3408 (2011).
21. Nicolet, C., Deribew, D., Renaud, C., Fleury, G., Brochon, C., Cloutet, E., Vignau, L., Wantz, G., Cramail, H., Geoghegan, M., and Hadziioannou, G.: Optimization of the bulk heterojunction composition for enhanced photovoltaic properties: correlation between the molecular weight of the semiconducting polymer and device Performance. J. Phys. Chem. B 115, 12717 (2011).
22. Wang, T., Dunbar, A.D.F., Staneic, P.A., Pearson, A.J., Hopkinson, P.E., MacDonald, J.E., Lilliu, S., Pizzey, C., Terrill, N.J., Donald, A.M., Ryan, A.J., Jones, R.A.L., and Lidzey, D.G.: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6, 4128 (2010).
23. Badrou Aïch, R., Zou, Y., Leclerc, M., and Tao, Y.: Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells. Org. Electron. 11, 1053 (2010).
24. Zoombelt, A.P., Mathijssen, S.G.J., Turbiez, M.G.R., Wienk, M.M., and Janssen, R.A.J.: Small band gap polymers based on diketopyrrolopyrrole. J. Mater. Chem. 20, 2240 (2010).
25. Hansson, R., Ericsson, L.K.E., Holmes, N.P., Rysz, J., Opitz, A., Campoy-Quiles, M., Wang, E., Barr, M.G., Kilcoyne, A.L.D., Zhou, X., Dastoor, P., and Moons, M.: Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC70BM blend. J. Mater. Chem. A 3, 6970 (2015).
26. Liu, F., Gu, Y., Wang, C., Zhao, W., Chen, D., Briseno, A.L., and Russell, T.P.: Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends. Adv. Mater. 24, 3947 (2012).
27. Hopkinson, P.E., Staniec, P.A., Pearson, A.J., Dunbar, A.D.F., Wang, T., Ryan, A.J., Jones, R.A.L., Lidzey, D.G., and Donald, A.M.: A phase diagram of the P3HT:PCBM organic photovoltaic system: implications for device processing and performance. Macromolecules 44, 2908 (2011).
28. Müller, C., Wang, E., Andersson, L.M., Tvingstedt, K., Zhou, Y., Andersson, M.R., and Inganäs, O.: Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Adv. Funct. Mater. 20, 2124 (2010).
29. Bruner, C., Novoa, F., Dupont, S., and Dauskardt, R.: Decohesion kinetics in polymer organic solar cells. ACS Appl. Mater. Interfaces 6, 21474 (2014).
30. Lindqvist, C., Wang, E., Andersson, M.R., and Müller, C.: Facile monitoring of fullerene crystallization in polymer solar cell blends by UV–vis spectroscopy. Macromol. Chem. Phys. 215, 530 (2014).
31. Holmes, N.P., Marks, M., Kumar, P., Kroon, R., Barr, M.G., Nicolaidis, N., Feron, K., Pivrikas, A., Fahy, A., Diaz de Zerio Mendaza, A., Kilcoyne, A.L.D., Müller, C., Zhou, X., Andersson, M.R., Dastoor, P.C., Belcher, W.J.: Nano-pathways: bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy 19, 495 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Holmes supplementary material
Holmes supplementary material 1

 Word (1.8 MB)
1.8 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed