Skip to main content
×
Home
    • Aa
    • Aa

Biomaterial-based strategies for the engineering of mechanically active soft tissues

  • Zhixiang Tong (a1) and Xinqiao Jia (a1)
Abstract
Abstract

Load-bearing, mechanically active tissues are routinely subjected to nonlinear mechanical deformations. Consequently, these tissues exhibit complex mechanical properties and unique tissue organizations. Successful engineering of mechanically active tissues relies on the integration of the mechanical sensing mechanism found in the native tissues into polymeric scaffolds. Intelligent biomaterials that closely mimic the structural organizations and multi-scale responsiveness of the natural extracellular matrices, when strategically combined with multipotent cells and dynamic culture devices that generate physiologically relevant physical forces, will lead to the creation of artificial tissues that are mechanically robust and biologically functional.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Biomaterial-based strategies for the engineering of mechanically active soft tissues
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Biomaterial-based strategies for the engineering of mechanically active soft tissues
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Biomaterial-based strategies for the engineering of mechanically active soft tissues
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Xinqiao Jia at xjia@udel.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.O.R. Ozerdem , S.A. Wolfe , and D. Marshall : Use of skin substitutes in pediatric patients. J. Craniofac. Surg. 14, 517 (2003).

2.P. Macchiarini , P. Jungebluth , T. Go , M.A. Asnaghi , L.E. Rees , T.A. Cogan , A. Dodson , J. Martorell , S. Bellini , P.P. Parnigotto , S.C. Dickinson , A.P. Hollander , S. Mantero , M.T. Conconi , and M.A. Birchall : Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023 (2008).

3.K. Gkioni , S.C.G. Leeuwenburgh , T.E.L. Douglas , A.G. Mikos , and J.A. Jansen : Mineralization of hydrogels for bone regeneration. Tissue Eng. Part B 16, 577 (2010).

4.A. Atala , S.B. Bauer , S. Soker , J.J. Yoo , and A.B. Retik : Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241 (2006).

5.J.R. Venugopal , M.P. Prabhakaran , S. Mukherjee , R. Ravichandran , K. Dan , and S. Ramakrishna : Biomaterial strategies for alleviation of myocardial infarction. J. R. Soc. Interface 9, 1 (2012).

6.J.D. Kakisis , C.D. Liapis , C. Breuer , and B.E. Sumpio : Artificial blood vessel: the holy grail of peripheral vascular surgery. J. Vasc. Surg. 41, 349 (2005).

7.S.D. Gray : Cellular physiology of the vocal folds. Otolaryngol. Clin. N. Am. 33, 679 (2000).

8.R. Langer and D.A. Tirrell : Designing materials for biology and medicine. Nature 428, 487 (2004).

9.J.A. Burdick and R.L. Mauck , eds.: Biomaterials for Tissue Engineering: A Review of the Past and Future Trends (Springer, New York, NY, 2011).

10.M.C. Serrano , E.J. Chung , and G.A. Ameer : Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20, 192 (2010).

11.M.P. Lutolf and J.A. Hubbell : Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47 (2005).

12.P.M. Crapo , T.W. Gilbert , and S.F. Badylak : An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233 (2011).

13.B. Amsden : Curable, biodegradable elastomers: Emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3, 1335 (2007).

14.J. Lal and J.E. Mark : Advances in Elastomers and Rubber Elasticity (Plenum Press, New York, 1986).

15.S.E. Grieshaber , A.K. Jha , A.J.E. Farran , and X. Jia : Hydrogels in tissue engineering. In Biomaterials for Tissue Engineering: A Review of the Past and Future Trends; J.A. Burdick and R.L. Mauck , eds.; Springer, New York, 2011; p. 9.

16.J. Kopecek : Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. Pol. Chem. 47, 5929 (2009).

17.C. Zhang , A. Aung , L.Q. Liao , and S. Varghese : A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter 5, 3831 (2009).

18.J.P. Gong : Why are double network hydrogels so tough? Soft Matter 6, 2583 (2010).

19.K. Haraguchi , R. Farnworth , A. Ohbayashi , and T. Takehisa : Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(n,n-dimethylacrylamide) and clay. Macromolecules 36, 5732 (2003).

21.L. Debelle , and A.M. Tamburro : Elastin: molecular description and function. Int. J. Biochem. Cell Biol. 31, 261 (1999).

22.J.F. Almine , D.V. Bax , S.M. Mithieux , L. Nivison-Smith , J. Rnjak , A. Waterhouse , S.G. Wise , and A.S. Weiss : Elastin-based materials. Chem. Soc. Rev. 39, 3371 (2010).

23.C.M. Bellingham , M.A. Lillie , J.M. Gosline , G.M. Wright , B.C. Starcher , A.J. Bailey , K.A. Woodhouse , and F.W. Keeley . Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70, 445 (2003).

24.S.E. Grieshaber , A.J.E. Farran , S. Lin-Gibson , K.L. Kiick , and X.Q. Jia : Synthesis and characterization of elastin-mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules 42, 2532 (2009).

25.X.Q. Jia and K.L. Kiick : Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140 (2009).

26.S.E. Grieshaber , A.J.E. Farran , S. Bai , K.L. Kiick , and X.Q. Jia : Tuning the properties of elastin mimetic hybrid copolymers via a modular polymerization method. Biomacromolecules (submitted 2012).

27.C.M. Elvin , A.G. Carr , M.G. Huson , J.M. Maxwell , R.D. Pearson , T. Vuocolo , N.E. Liyou , D.C.C. Wong , D.J. Merritt , and N.E. Dixon : Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999 (2005).

28.G.K. Qin , A. Rivkin , S. Lapidot , X. Hu , I. Preis , S.B. Arinus , O. Dgany , O. Shoseyov , and D.L. Kaplan : Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231 (2011).

29.L.Q. Li , S. Teller , R.J. Clifton , X.Q. Jia , and K.L. Kiick : Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 12, 2302 (2011).

30.R. Langer , and J.P. Vacanti : Tissue engineering. Science 260, 920 (1993).

31.P. Zheng , and T.J. McCarthy : A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024 (2012).

32.D. Montarnal , M. Capelot , F. Tournilhac , and L. Leibler : Silica-like malleable materials from permanent organic networks. Science 334, 965 (2011).

33.C.J. Kloxin , T.F. Scott , B.J. Adzima , and C.N. Bowman : Covalent adaptable networks (cans): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643 (2010).

34.R.V. Ulijn and A.M. Smith : Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664 (2008).

35.R. Orbach , L. Adler-Abramovich , S. Zigerson , I. Mironi-Harpaz , D. Seliktar , and E. Gazit : Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10, 2646 (2009).

36.J.D. Hartgerink , E. Beniash , and S.I. Stupp : Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001).

37.S.G. Zhang : Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20, 321 (2002).

38.J.P. Schneider , D.J. Pochan , B. Ozbas , K. Rajagopal , L. Pakstis , and J. Kretsinger : Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030 (2002).

39.Z. Megeed , J. Cappello , and H. Ghandehari : Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 54, 1075 (2002).

40.W. Shen , K.C. Zhang , J.A. Kornfield , and D.A. Tirrell : Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5, 153 (2006).

41.C.Q. Yan , A. Altunbas , T. Yucel , R.P. Nagarkar , J.P. Schneider , and D.J. Pochan : Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6, 5143 (2010).

42.B.D. Hoffman , C. Grashoff , and M.A. Schwartz : Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316 (2011).

43.P. Fratzl : Biomimetic materials research: What can we really learn from nature's structural materials? J. R. Soc. Interface 4, 637 (2007).

44.G.E. Fantner , T. Hassenkam , J.H. Kindt , J.C. Weaver , H. Birkedal , L. Pechenik , J.A. Cutroni , G.A.G. Cidade , G.D. Stucky , D.E. Morse , and P.K. Hansma : Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612 (2005).

45.N. Becker , E. Oroudjev , S. Mutz , J.P. Cleveland , P.K. Hansma , C.Y. Hayashi , D.E. Makarov , and H.G. Hansma : Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278 (2003).

46.E. Wisse , L.E. Govaert , H.E.H. Meijer , and E.W. Meijer : Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers. Macromolecules 39, 7425 (2006).

47.R.P. Sijbesma , F.H. Beijer , L. Brunsveld , B.J.B. Folmer , J. Hirschberg , R.F.M. Lange , J.K.L. Lowe , and E.W. Meijer : Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601 (1997).

48.T.F.A. Greef , and E.W. Meijer : Materials science—supramolecular polymers. Nature 453, 171 (2008).

49.A.M. Kushner , V. Gabuchian , E.G. Johnson , and Z.B. Guan : Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 129, 14110 (2007).

50.A.M. Kushner , and Z.B. Guan : Modular design in natural and biomimetic soft materials. Angew. Chem.-Int. Ed. 50, 9026 (2011).

51.P. Cordier , F. Tournilhac , C. Soulie-Ziakovic , and L. Leibler : Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977 (2008).

52.P.Y.W. Dankers , M.C. Harmsen , L.A. Brouwer , M.J.A. Van Luyn , and E.W. Meijer : A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568 (2005).

53.S. Lv , D.M. Dudek , Y. Cao , M.M. Balamurali , J. Gosline , and H.B. Li : Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69 (2010).

54.M.M. Stevens , and J.H. George : Exploring and engineering the cell surface interface. Science 310, 1135 (2005).

55.F. Torrent-Guasp , M.J. Kocica , A.F. Corno , M. Komeda , F. Carreras-Costa , A. Flotats , J. Cosin-Aguillar , and H. Wen : Towards new understanding of the heart structure and function. Eur. J. Cardio-Thorac. Surg. 27, 191 (2005).

56.J.W. Holmes , T.K. Borg , and J.W. Covell : Annual Review of Biomedical Engineering. Annual Reviews (Annual Review: Palo Alto, CA, 2005), Vol. 7, p. 223.

57.N.P. Cohen , R.J. Foster , and V.C. Mow : Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203 (1998).

59.X.Q. Jia , Y. Yeo , R.J. Clifton , T. Jiao , D.S. Kohane , J.B. Kobler , S.M. Zeitels , and R. Langer : Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 3336 (2006).

60.A.K. Jha , R.A. Hule , T. Jiao , S.S. Teller , R.J. Clifton , R.L. Duncan , D.J. Pochan , and X.Q. Jia : Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 42, 537 (2009).

61.A.K. Jha , M.S. Malik , M.C. Farach-Carson , R.L. Duncan , and X.Q. Jia : Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 6, 5045 (2010).

62.A.K. Jha , W.D. Yang , C.B. Kirn-Safran , M.C. Farach-Carson , and X.Q. Jia : Perlecan domain i-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via bmp-2 release. Biomaterials 30, 6964 (2009).

63.X. Xu , A.K. Jha , R.L. Duncan , and X.Q. Jia : Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater. 7, 3050 (2011).

64.X. Xu , A.K. Jha , D.A. Harrington , M.C. Farach-Carson , and X.Q. Jia : Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter 8, 3280 (2012).

65.O.D. Krishna , A.K. Jha , X.Q. Jia , and K.L. Kiick : Integrin-mediated adhesion and proliferation of human mscs elicited by a hydroxyproline-lacking, collagen-like peptide. Biomaterials 32, 6412 (2011).

66.A.K. Jha , X.A. Xu , R.L. Duncan , and X.Q. Jia : Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466 (2011).

67.F.T. Moutos , L.E. Freed , and F. Guilak : A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6, 162 (2007).

68.N.L. Nerurkar , B.M. Baker , S. Sen , E.E. Wible , D.M. Elliott , and R.L. Mauck : Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8, 986 (2009).

69.G.C. Engelmayr , M.Y. Cheng , C.J. Bettinger , J.T. Borenstein , R. Langer , and L.E. Freed : Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003 (2008).

70.M.C. Farach-Carson , J.T. Hecht , and D.D. Carson : Heparan sulfate proteoglycans: key players in cartilage biology. Crit. Rev. Eukaryot. Gene Expr. 15, 29 (2005).

71.M.C. Farach-Carson , and D.D. Carson : Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology 17, 897 (2007).

72.C.L. Casper , W.D. Yang , M.C. Farach-Carson , and J.F. Rabolt : Coating electrospun collagen and gelatin fibers with perlecan domain i for increased growth factor binding. Biomacromolecules 8, 1116 (2007).

73.D.J. Tschumperlin , G.H. Dai , I.V. Maly , T. Kikuchi , L.H. Laiho , A.K. McVittie , K.J. Haley , C.M. Lilly , P.T.C. So , D.A. Lauffenburger , R.D. Kamm , and J.M. Drazen : Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83 (2004).

74.K.Y. Lee , M.C. Peters , K.W. Anderson , and D.J. Mooney : Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998 (2000).

75.L.X. Xiao , C. Liu , J.H. Zhu , D.J. Pochan , and X.Q. Jia : Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter 6, 5293 (2010).

77.C.J. Hartnick , R. Rehbar , and V. Prasad : Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 115, 4 (2005).

78.K. Sato , M. Hirano , and T. Nakashima : Fine structure of the human newborn and infant vocal fold mucosae. Ann. Otol. Rhinol. Laryngol. 110, 417 (2001).

79.K. Sato , M. Hirano , and T. Nakashima : Age-related changes of collagenous fibers in the human vocal fold mucosa. Ann. Otol. Rhinol. Laryngol. 111, 1520 (2002).

80.K. Sato , T. Nakashima , S. Nonaka , and Y. Harabuchi : Histopathologic investigations of the unphonated human vocal fold mucosa. Acta Oto-Laryngol. 128, 694 (2008).

81.J.Y. Kresh , and A. Chopra : Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch. 462, 75 (2011).

82.C. Kung : A possible unifying principle for mechanosensation. Nature 436, 647 (2005).

83.M. Chiquet : Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18, 417 (1999).

84.M.E. Chicurel , C.S. Chen , and D.E. Ingber : Cellular control lies in the balance of forces. Curr. Opin. Cell. Biol. 10, 232 (1998).

85.D.E. Ingber : Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97, 163 (2008).

86.D.E. Ingber : Cellular mechanotransduction: Putting all the pieces together again. Faseb J. 20, 811 (2006).

87.D.A. Fletcher , and D. Mullins : Cell mechanics and the cytoskeleton. Nature 463, 485 (2010).

88.H.C. Chen , and Y.C. Hu : Bioreactors for tissue engineering. Biotechnol. Lett. 28, 1415 (2006).

89.L.E. Niklason , J. Gao , W.M. Abbott , K.K. Hirschi , S. Houser , R. Marini , and R. Langer : Functional arteries grown in vitro. Science 284, 489 (1999).

90.T. Davisson , S. Kunig , A. Chen , R. Sah , and A. Ratcliffe : Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20, 842 (2002).

91.D.M. Doroski , M.E. Levenston , and J.S. Temenoff : Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng. Part A 16, 3457 (2010).

92.I.R. Titze : Mechanical stress in phonation. J. Voice 8, 99 (1994).

93.I.R. Titze , R.W. Hitchcock , K. Broadhead , K. Webb , W. Li , S.D. Gray , and P.A. Tresco : Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37, 1521 (2004).

97.S. Ramachandran , Y. Tseng , and Y.B. Yu : Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules 6, 1316 (2005).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×