Skip to main content
×
Home
    • Aa
    • Aa

Engineering semiconducting polymers for efficient charge transport

  • Scott Himmelberger (a1) and Alberto Salleo (a1)
Abstract
Abstract

Electronic performance in semiconducting polymers has improved dramatically in recent years owing to a host of novel materials and processing techniques. Our understanding of the factors governing charge transport in these materials has also been enhanced through advancements in both experimental and computational techniques, with disorder appearing to play a central role. In this prospective, we propose that disorder is an inextricable aspect of polymer morphology which need not be highly detrimental to charge transport if it is embraced and planned for. We discuss emerging guidelines for the synthesis of polymers which are resilient to disorder and present our vision for how future advances in processing and molecular design will provide a path toward further increases in charge-carrier mobility.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Engineering semiconducting polymers for efficient charge transport
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Engineering semiconducting polymers for efficient charge transport
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Engineering semiconducting polymers for efficient charge transport
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Alberto Salleo atasalleo@stanford.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. C.-C. Chen , W.-H. Chang , K. Yoshimura , K. Ohya , J. You , J. Gao , Z. Hong , and Y. Yang : An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 56705677 (2014).

2. O. Knopfmacher , M.L. Hammock , A.L. Appleton , G. Schwartz , J. Mei , T. Lei , J. Pei , and Z. Bao : Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, (2014).

3. M. Kaltenbrunner , T. Sekitani , J. Reeder , T. Yokota , K. Kuribara , T. Tokuhara , M. Drack , R. Schwödiauer , I. Graz , S. Bauer-Gogonea , S. Bauer , and T. Someya : An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458463 (2013).

4. M.S. White , M. Kaltenbrunner , E.D. Głowacki , K. Gutnichenko , G. Kettlgruber , I. Graz , S. Aazou , C. Ulbricht , D.A.M. Egbe , M.C. Miron , Z. Major , M.C. Scharber , T. Sekitani , T. Someya , S. Bauer , and N.S. Sariciftci : Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811816 (2013).

5. H.-J. Yun , S.-J. Kang , Y. Xu , S.O. Kim , Y.-H. Kim , Y.-Y. Noh , and S.-K. Kwon : Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 73007307 (2014).

6. G. Kim , S.-J. Kang , G.K. Dutta , Y.-K. Han , T.J. Shin , Y.-Y. Noh , and C. Yang : A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 94779483 (2014).

7. I. Kang , H.-J. Yun , D.S. Chung , S.-K. Kwon , and Y.-H. Kim : Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 1489614899 (2013).

8. J. Lee , A.-R. Han , H. Yu , T.J. Shin , C. Yang , and J.H. Oh : Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 135, 95409547 (2013).

9. J. Li , Y. Zhao , H.S. Tan , Y. Guo , C.-A. Di , G. Yu , Y. Liu , M. Lin , S.H. Lim , Y. Zhou , H. Su , and B.S. Ong : A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2 (2012).

10. C. Luo , A.K.K. Kyaw , L.A. Perez , S. Patel , M. Wang , B. Grimm , G.C. Bazan , E.J. Kramer , and A.J. Heeger : General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 27642771 (2014).

11. A. Tsumura , H. Koezuka , and T. Ando : Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 12101212 (1986).

12. H. Dong , X. Fu , J. Liu , Z. Wang , and W. Hu : 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 61586183 (2013).

13. Z. Bao , A. Dodabalapur , and A.J. Lovinger : Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 41084110 (1996).

14. I. McCulloch , M. Heeney , C. Bailey , K. Genevicius , I. MacDonald , M. Shkunov , D. Sparrowe , S. Tierney , R. Wagner , W. Zhang , M.L. Chabinyc , R.J. Kline , M.D. McGehee , and M.F. Toney : Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328333 (2006).

15. H.-R. Tseng , H. Phan , C. Luo , M. Wang , L.A. Perez , S.N. Patel , L. Ying , E.J. Kramer , T.-Q. Nguyen , G.C. Bazan , and A.J. Heeger : High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 29932998 (2014).

16. J. Mei , D.H. Kim , A.L. Ayzner , M.F. Toney , and Z. Bao : Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 2013020133 (2011).

17. H. Yan , Z. Chen , Y. Zheng , C. Newman , J.R. Quinn , F. Dötz , M. Kastler , and A. Facchetti : A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679686 (2009).

18. H. Li , F.S. Kim , G. Ren , and S.A. Jenekhe : High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J. Am. Chem. Soc. 135, 1492014923 (2013).

19. D. Venkateshvaran , M. Nikolka , A. Sadhanala , V. Lemaur , M. Zelazny , M. Kepa , M. Hurhangee , A.J. Kronemeijer , V. Pecunia , I. Nasrallah , I. Romanov , K. Broch , I. McCulloch , D. Emin , Y. Olivier , J. Cornil , D. Beljonne , and H. Sirringhaus : Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384388 (2014).

20. H. Sirringhaus : 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 13191335 (2014).

21. C.B. Nielsen , M. Turbiez , and I. McCulloch : Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 25, 18591880 (2013).

22. T. Liu and A. Troisi : Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925933 (2014).

23. A. Salleo , M.L. Chabinyc , M.S. Yang , and R.A. Street : Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 43834385 (2002).

24. L.H. Jimison , S. Himmelberger , D.T. Duong , J. Rivnay , M.F. Toney , and A. Salleo : Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. J. Polym. Sci. B: Polym. Phys. 51, 611620 (2013).

25. R.J. Kline , M.D. McGehee , and M.F. Toney : Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222228 (2006).

26. F.P.V. Koch , J. Rivnay , S. Foster , C. Müller , J.M. Downing , E. Buchaca-Domingo , P. Westacott , L. Yu , M. Yuan , M. Baklar , Z. Fei , C. Luscombe , M.A. McLachlan , M. Heeney , G. Rumbles , C. Silva , A. Salleo , J. Nelson , P. Smith , and N. Stingelin : The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38, 19781989 (2013).

27. S. Himmelberger , K. Vandewal , Z. Fei , M. Heeney , and A. Salleo : Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 71517157 (2014).

28. A. Zen , J. Pflaum , S. Hirschmann , W. Zhuang , F. Jaiser , U. Asawapirom , J.P. Rabe , U. Scherf , and D. Neher : Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757764 (2004).

29. R.J. Kline , M.D. McGehee , E.N. Kadnikova , J. Liu , and J.M.J. Fréchet : Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15, 15191522 (2003).

30. W. Li , L. Yang , J.R. Tumbleston , L. Yan , H. Ade , and W. You : Controlling molecular weight of a high efficiency donor–acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv. Mater. 26, 44564462 (2014).

31. R. Noriega , J. Rivnay , K. Vandewal , F.P.V. Koch , N. Stingelin , P. Smith , M.F. Toney , and A. Salleo : A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 10381044 (2013).

32. D.T. Duong , M.F. Toney , and A. Salleo : Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. . 86, 205205 (2012).

33. A. Devižis , A. Serbenta , K. Meerholz , D. Hertel , and V. Gulbinas : Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys. Rev. Lett. 103, 027404 (2009).

34. A. Devizis , K. Meerholz , D. Hertel , and V. Gulbinas : Ultrafast charge carrier mobility dynamics in poly(spirobifluorene-co-benzothiadiazole): influence of temperature on initial transport. Phys. Rev. B 82, 155204 (2010).

35. A. Devižis , K. Meerholz , D. Hertel , and V. Gulbinas : Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498, 302306 (2010).

36. R.P. Fornari and A. Troisi : Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 999710007 (2014).

37. T. Qin and A. Troisi : Relation between structure and electronic properties of amorphous MEH–PPV polymers. J. Am. Chem. Soc. 135, 1124711256 (2013).

38. D.P. McMahon , D.L. Cheung , L. Goris , J. Dacuña , A. Salleo , A. Troisi: Relation between microstructure and charge transport in polymers of different regioregularity. J. Phys. Chem. C 115, 1938619393 (2011).

39. R. Noriega , A. Salleo , and A.J. Spakowitz : Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. Proc. Natl. Acad. Sci. USA 110, 1631516320 (2013).

40. F. Laquai , G. Wegner , and H. Bässler : What determines the mobility of charge carriers in conjugated polymers? Phil. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365, 14731487 (2007).

41. C. Scharsich , R.H. Lohwasser , M. Sommer , U. Asawapirom , U. Scherf , M. Thelakkat , D. Neher , and A. Köhler : Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. B: Polym. Phys. 50, 442453 (2012).

42. P. Pingel , A. Zen , R.D. Abellón , F.C. Grozema , L.D.A. Siebbeles , and D. Neher : Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv. Funct. Mater. 20, 22862295 (2010).

43. J.-C. Bolsée , W.D. Oosterbaan , L. Lutsen , D. Vanderzande , and J. Manca : The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv. Funct. Mater. 23, 862869 (2013).

44. J. Rivnay , R. Noriega , R.J. Kline , A. Salleo , and M.F. Toney : Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011).

45. A.M. Hindeleh and R. Hosemann : Microparacrystals: the intermediate stage between crystalline and amorphous. J. Mater. Sci. 26, 51275133 (1991).

46. J. Rivnay , R. Noriega , J.E. Northrup , R.J. Kline , M.F. Toney , and A. Salleo : Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).

47. A. Assadi , C. Svensson , M. Willander , and O. Inganäs : Field-effect mobility of poly(3-hexylthiophene). Appl. Phys. Lett. 53, 195197 (1988).

48. J.D. Yuen , J. Fan , J. Seifter , B. Lim , R. Hufschmid , A.J. Heeger , and F. Wudl : High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 133, 2079920807 (2011).

49. I. Kang , T.K. An , J. Hong , H.-J. Yun , R. Kim , D.S. Chung , C.E. Park , Y.-H. Kim , and S.-K. Kwon : Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv. Mater. 25, 524528 (2013).

50. J.E. Donaghey , E.-H. Sohn , R.S. Ashraf , T.D. Anthopoulos , S.E. Watkins , K. Song , C.K. Williams , and I. McCulloch : Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polym. Chem. 4, 35373544 (2013).

51. A.T. Yiu , P.M. Beaujuge , O.P. Lee , C.H. Woo , M.F. Toney , and J.M.J. Fréchet : Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134, 21802185 (2012).

52. J. Mei and Z. Bao : Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604615 (2014).

53. V. Coropceanu , J. Cornil , D.A. da Silva Filho , Y. Olivier , R. Silbey , and J.-L. Brédas : Charge transport in organic semiconductors. Chem. Rev. 107, 926952 (2007).

54. J.L. Brédas , J.P. Calbert , D.A. da Silva Filho , and J. Cornil : Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 58045809 (2002).

55. Y. Olivier , D. Niedzialek , V. Lemaur , W. Pisula , K. Müllen , U. Koldemir , J.R. Reynolds , R. Lazzaroni , J. Cornil , and D. Beljonne : 25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 21192136 (2014).

56. T. Lei , J.-Y. Wang , and J. Pei : Design, synthesis, and structure–property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 11171126 (2014).

57. Y. Deng , Y. Chen , X. Zhang , H. Tian , C. Bao , D. Yan , Y. Geng , and F. Wang : Donor–acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules 45, 86218627 (2012).

58. A. Troisi : The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 19881991 (2011).

59. Y. Liu , J. Zhao , Z. Li , C. Mu , W. Ma , H. Hu , K. Jiang , H. Lin , H. Ade , and H. Yan : Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5 (2014)..

60. M.S. Chen , O.P. Lee , J.R. Niskala , A.T. Yiu , C.J. Tassone , K. Schmidt , P.M. Beaujuge , S.S. Onishi , M.F. Toney , A. Zettl , and J.M.J. Fréchet : Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 135, 1922919236 (2013).

61. A. Facchetti : π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733758 (2010).

62. I. McCulloch , R.S. Ashraf , L. Biniek , H. Bronstein , C. Combe , J.E. Donaghey , D.I. James , C.B. Nielsen , B.C. Schroeder , and W. Zhang : Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc. Chem. Res. 45, 714722 (2012).

63. P. Carbone and A. Troisi : Charge diffusion in semiconducting polymers: analytical relation between polymer rigidity and time scales for intrachain and interchain hopping. J. Phys. Chem. Lett. 5, 26372641 (2014).

64. W. Zhang , J. Smith , S.E. Watkins , R. Gysel , M. McGehee , A. Salleo , J. Kirkpatrick , S. Ashraf , T. Anthopoulos , M. Heeney , and I. McCulloch : Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132, 1143711439 (2010).

65. X. Zhang , H. Bronstein , A.J. Kronemeijer , J. Smith , Y. Kim , R.J. Kline , L.J. Richter , T.D. Anthopoulos , H. Sirringhaus , K. Song , M. Heeney , W. Zhang , I. McCulloch , and D.M. DeLongchamp : Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4 (2013).

66. T. Schuettfort , S. Huettner , S. Lilliu , J.E. Macdonald , L. Thomsen , and C.R. McNeill : Surface and bulk structural characterization of a high-mobility electron-transporting polymer. Macromolecules 44, 15301539 (2011).

67. C. Wang , J. Rivnay , S. Himmelberger , K. Vakhshouri , M.F. Toney , E.D. Gomez , and A. Salleo : Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. ACS Appl. Mater. Interfaces 5, 23422346 (2013).

68. R.P. Fornari and A. Troisi : Narrower bands with better charge transport: the counterintuitive behavior of semiconducting copolymers. Adv. Mater. 26, 76277631 (2014).

69. H.N. Tsao , D.M. Cho , I. Park , M.R. Hansen , A. Mavrinskiy , D.Y. Yoon , R. Graf , W. Pisula , H.W. Spiess , and K. Müllen : Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 26052612 (2011).

70. D.S. Pearson , P.A. Pincus , G.W. Heffner , and S.J. Dahman : Effect of molecular weight and orientation on the conductivity of conjugated polymers. Macromolecules 26, 15701575 (1993).

71. J.-F. Chang , B. Sun , D.W. Breiby , M.M. Nielsen , T.I. Sölling , M. Giles , I. McCulloch , and H. Sirringhaus : Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 47724776 (2004).

72. P.K.-H. Ho , L.-L. Chua , M. Dipankar , X.Y. Gao , D.C. Qi , A.T.-S. Wee , J.-F. Chang , and R.H. Friend : Solvent effects on chain orientation and interchain π-interaction in conjugated polymer thin films: direct measurements of the air and substrate interfaces by near-edge x-ray absorption spectroscopy. Adv. Mater. 19, 215221 (2007).

73. J. Rivnay , R. Steyrleuthner , L.H. Jimison , A. Casadei , Z. Chen , M.F. Toney , A. Facchetti , D. Neher , and A. Salleo : Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 52465255 (2011).

74. L.H. Jimison , M.F. Toney , I. McCulloch , M. Heeney , and A. Salleo : Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 15681572 (2009).

75. J. Li , J. Du , J. Xu , H.L.W. Chan , and F. Yan : The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Appl. Phys. Lett. 100, 033301 (2012).

76. J. Veres , S.D. Ogier , S.W. Leeming , D.C. Cupertino , and S. Mohialdin Khaffaf : Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199204 (2003).

78. J.H. Cho , J. Lee , Y. Xia , B. Kim , Y. He , M.J. Renn , T.P. Lodge , and C. Daniel Frisbie : Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900906 (2008).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 27
Total number of PDF views: 102 *
Loading metrics...

Abstract views

Total abstract views: 239 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2017. This data will be updated every 24 hours.