Skip to main content
×
×
Home

Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined experimental and first-principles study

  • Aihong Liu (a1), Zhe Chen (a2), Xiangxia Wei (a2), Wen Xiao (a2) and Jun Ding (a2)...
Abstract

A non-precious metal catalytic system of Fe-doped Ta2O5 is developed by pulsed laser deposition toward efficient oxygen evolution reaction (OER). The optimal Fe concentration is determined to be 5 at.% for optimized OER activity via a series of electrochemical characterizations. The 5 at.% Fe-doped Ta2O5 nanolayer possesses a low onset overpotential of 0.22 V, an overpotential of 0.38 V at 10 mA/cm2 and a Tafel slope of 54 mV/dec. Comprehensive first-principles calculations attribute the enhanced OER activity to the substitutional FeTa dopants, which generate a new active OER site on surface and simultaneously accelerate electron transfer over oxygens.

Copyright
Corresponding author
Address all correspondence to Jun Ding at msedingj@nus.edu.sg
References
Hide All
1.Dresselhaus, M.S. and Thomas, I.L.: Alternative energy technologies. Nature 414, 332 (2001).
2.Montoya, J.H., Seitz, L.C., Chakthranont, P., Vojvodic, A., Jaramillo, T.F., and Norskov, J.K.: Materials for solar fuels and chemicals. Nat. Mater. 16, 70 (2017).
3.Hoang, S. and Gao, P.-X.: Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling. Adv. Energy Mater. 6, 1600683 (2016).
4.Liu, C., Roder, R., Zhang, L., Ren, Z., Chen, H., Zhang, Z., Ronning, C., and Gao, P.-X.: Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies. J. Mater. Chem. A 2, 4157 (2014).
5.Weng, B., Xu, F., Wang, C., Meng, W., Grice, C.R., and Yan, Y.: A layered Na1−xNiyFe1−yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 10, 121 (2017).
6.Xu, X., Song, F., and Hu, X.: A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016).
7.Qiu, Y., Xin, L., and Li, W.: Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir 30, 7893 (2014).
8.Song, W., Ren, Z., Chen, S.-Y., Meng, Y., Biswas, S., Nandi, P., Elsen, H.A., Gao, P.-X., and Suib, S.L.: Ni- and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces 8, 20802 (2016).
9.Gao, D., Zhang, J., Wang, T., Xiao, W., Tao, K., Xue, D., and Ding, J.: Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 4, 17363 (2016).
10.Huang, X., Leng, M., Xiao, W., Li, M., Ding, J., Tan, T.L., Lee, W.S.V., and Xue, J.: Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 27, 1604943 (2017).
11.Xiao, W., Liu, P., Zhang, J., Song, W., Feng, Y.P., Gao, D., and Ding, J.: Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater. 7, 1602086 (2017).
12.Xiao, W., Huang, X., Song, W., Yang, Y., Herng, T.S., Xue, J.M., Feng, Y.P., and Ding, J.: High catalytic activity of oxygen-induced (200) surface of Ta2O5 nanolayer towards durable oxygen evolution reaction. Nano Energy 25, 60 (2016).
13.Wang, L., Huang, X., and Xue, J.: Graphitic mesoporous carbon loaded with iron–nickel hydroxide for superior oxygen evolution reactivity. ChemSusChem 9, 1835 (2016).
14.Li, Y., Gong, M., Liang, Y., Feng, J., Kim, J.-E., Wang, H., Hong, G., Zhang, B., and Dai, H.: Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013).
15.Dresp, S., Luo, F., Schmack, R., Kuhl, S., Gliech, M., and Strasser, P.: An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 9, 2020 (2016).
16.Trasatti, S.: Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29, 1503 (1984).
17.Cherevko, S., Reier, T., Zeradjanin, A.R., Pawolek, Z., Strasser, P., and Mayrhofer, K.J.J.: Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 48, 81 (2014).
18.Yamashita, Y., Tada, M., Kakihana, M., Osada, M., and Yoshida, K.: Synthesis of RuO2-loaded BaTinO2n+1 (n = 1, 2 and 5) using a polymerizable complex method and its photocatalytic activity for the decomposition of water. J. Mater. Chem. 12, 1782 (2002).
19.Morales, S. and Fernandez, A.: Unsupported PtxRuyIrz and PtxIry as bi-functional catalyst for oxygen reduction and oxygen evolution reactions in acid media, for unitized regenerative fuel cell. Int. J. Electrochem. Sci. 8, 12692 (2013).
20.Burke, M.S., Enman, L.J., Batchellor, A.S., Zou, S., and Boettcher, S.W.: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549 (2015).
21.Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A.P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., and Markovic, N.M.: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550 (2012).
22.McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F.: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).
23.Burke, M.S., Kast, M.G., Trotochaud, L., Smith, A.M., and Boettcher, S.W.: Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638 (2015).
24.Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., Cheng, M.-J., Sokaras, D., Weng, T.-C., Alonso-Mori, R., Davis, R.C., Bargar, J.R., Nørskov, J.K., Nilsson, A., and Bell, A.T.: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305 (2015).
25.Görlin, M., Chernev, P., Ferreira de Araújo, J., Reier, T., Dresp, S., Paul, B., Krähnert, R., Dau, H., and Strasser, P.: Oxygen evolution reaction dynamics, Faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603 (2016).
26.Zou, S., Burke, M.S., Kast, M.G., Fan, J., Danilovic, N., and Boettcher, S.W.: Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011 (2015).
27.Atanassova, E.: Thin RF sputtered and thermal Ta2O5 on Si for high density DRAM application. Microelectron. Reliab. 39, 1185 (1999).
28.Fujii, T., de Groot, F.M.F., Sawatzky, G.A., Voogt, F.C., Hibma, T., and Okada, K.: In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195 (1999).
29.Lee, S.-H., Kim, J., Kim, S.-J., Kim, S., and Park, G.-S.: Hidden structural order in orthorhombic Ta2O5. Phys. Rev. Lett. 110, 235502 (2013).
30.Man, I.C., Su, H.-Y., Calle-Vallejo, F., Hansen, H.A., Martínez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Nørskov, J.K., and Rossmeisl, J.: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Liu supplementary material
Liu supplementary material

 Word (1.8 MB)
1.8 MB

Metrics

Full text views

Total number of HTML views: 16
Total number of PDF views: 51 *
Loading metrics...

Abstract views

Total abstract views: 279 *
Loading metrics...

* Views captured on Cambridge Core between 3rd August 2017 - 20th August 2018. This data will be updated every 24 hours.