Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T04:03:01.671Z Has data issue: false hasContentIssue false

Enhancement transmittance of a metamaterial filter based on local surface plasma resonance

Published online by Cambridge University Press:  19 March 2018

Chao Chen*
Affiliation:
School of Computing Science, Sichuan University of Science and Engineering, Zigong 643000, China High Performance Computing Center, Sichuan University of Science and Engineering, Zigong 643000, China
Fei Wang
Affiliation:
School of Computing Science, Sichuan University of Science and Engineering, Zigong 643000, China
Yuping Sheng
Affiliation:
Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong 643000, China
Jun Wang
Affiliation:
School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
*
Address all correspondence to Chao Chen at swd_ll2001@163.com
Get access

Abstract

In this paper, a single-band local surface plasmon mode resonance metamaterial filter is calculated and simulated. The damping constant of the gold film is optimized in simulations to eliminate the effects of the grain boundary and the surface scattering on the transmission property. The transmission property of the designed metamaterial filter can be enhanced through optimizing structural parameters (the vertical distance or radius of the gold particle). Two narrow transmission bands are achieved due to the electric field enhancement effect. The electric field enhancement factor η = |E|/|E 0| is used to reveal the electric field resonance strength change. Higher transmission peak and larger field enhancement factor can be achieved than the pure gold hole array structure.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., and Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977979 (2006).Google Scholar
2. Cai, W., Chettiar, U.K., Kildishev, A.V., and Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics 1, 224227 (2007).Google Scholar
3. Lim, S., Caloz, C., and Itoh, T.: Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Trans. Microw. Theory Tech. 52, 26782690 (2005).Google Scholar
4. Engheta, N. and Alù, A.: Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. Opt. Express 15, 33183332 (2007).Google Scholar
5. Diem, M., Koschny, T., and Soukoulis, C.M.: Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 79, 033101033104 (2009).Google Scholar
6. Munday, J.N. and Atwater, H.A.: Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett. 11, 21952200 (2011).CrossRefGoogle ScholarPubMed
7. Rosenberg, J., Shenoi, R.V., Vandervelde, T.E., Krishna, S., and Painter, O.: A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl. Phys. Lett. 95, 161101161103 (2009).CrossRefGoogle Scholar
8. Cheng, B.H., Lan, Y.C., and Tsai, D.P.: Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt. Express 21, 1489814906 (2013).Google Scholar
9. Liu, N., Mesch, M., Weiss, T., Hentschel, M., and Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 23422348 (2010).Google Scholar
10. Hao, Q., Juluri, B.K., Zheng, Y.B., Wang, B., Chiang, I., Jensen, L., Crespi, V., Eklund, P.C., and Huang, T.J.: Effects of intrinsic Fano interference on surface enhanced Raman spectroscopy: comparison between platinum and gold. J. Phys. Chem. C 114, 1805918066 (2010).CrossRefGoogle Scholar
11. Teperik, T.V., García de Abajo, F.J., Borisov, A.G., Abdelsalam, M., Bartlett, P.N., Sugawara, Y., and Baumberg, J.J.: Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2, 299301 (2008).Google Scholar
12. Hu, H., Ma, C., and Liu, Z.: Plasmonic dark field microscopy. Appl. Phys. Lett. 96, 113107113109 (2010).Google Scholar
13. Popov, E., Maystre, D., McPhedran, R.C., Neviere, M., Huthley, M.C., and Derrick, G.H.: Total absorption of unpolarized light by crossed gratings. Opt. Express 16, 61466155 (2008).CrossRefGoogle ScholarPubMed
14. Lu, M.Z., Li, W.Z., and Brown, E.R.: Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt. Lett. 36, 10711073 (2011).CrossRefGoogle ScholarPubMed
15. Zhu, Y.H., Vegesna, S., Kuryatkov, V., Holtz, M., Saed, M., and Bernussi, A.A.: Terahertz bandpass filters using double-stacked metamaterial layers. Opt. Lett. 37, 296298 (2012).Google Scholar
16. Alnaib, I.A.I., Jansen, C., and Koch, M.: Miniaturized bandpass filter based on metamaterial resonators: a conceptual study. J. Phys. D 41, 205002205004 (2008).Google Scholar
17. Chiang, Y.J., Yang, C.S., Pan, C.L., and Yen, T.J.: An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Am. Inst. Phys. 99, 191909191911 (2011).Google Scholar
18. Lu, M.Z., Li, W.Z., and Brown, E.R.: Second-order bandpass THz filter achieved by multilayer complementary metamaterial structures. Opt. Lett. 36, 10711073 (2011).Google Scholar
19. Liu, J.Q., Chao, X.B., Wei, J.N., He, M.D., and Wang, L.L.: Multiple enhanced transmission bands through compound periodic array of rectangular holes. J. Appl. Phys. 106, 093108–009312 (2009).Google Scholar
20. Liu, Z.F. and Jin, G.J.: Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays. J. Appl. Phys. 106, 063122063126 (2009).Google Scholar
21. Xiao, S.S., Mortensen, N.A., and Qiu, M.: Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer. J. Eur. Opt. Soc. Rapid Publ. 2, 0700907013 (2007).Google Scholar
22. Tang, M.C., Xiao, S.Q., Wang, D., Ge, G.D., Bai, Y.Y., Zhang, J.R., and Wang, B.Z.: Expanding the bandwidth of planar MNG materials with co-directional split-ring resonators. Chin. Phys. B 20, 067805067807 (2011).CrossRefGoogle Scholar
23. Enoch, S., Popov, E., Neviere, M., and Reinisch, R.: Enhanced light transmission by hole arrays. J. Opt. A: Pure Appl. Opt. 4, S83S87 (2002).CrossRefGoogle Scholar
24. Chen, Y.G., Wang, Y.H., Zhang, Y., and Liu, S.T.: Numerical investigation of the transmission enhancement through subwavelength hole array. Opt. Commun. 274, 236240 (2007).CrossRefGoogle Scholar
25. Catrysse, P.B., and Fan, S.: Enlarging the bandwidth of nanoscale propagating plasmonic modes in deep-subwavelength cylindrical holes. Appl. Phys. Lett. 91, 181118181121 (2007).Google Scholar
26. Barnes, W.L., Murray, W.A., Dintinger, J., Devaux, E., and Ebbesen, T.W.: Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401107404 (2004).Google Scholar
27. Wang, C.N., Bai, M., Jin, M., and Zhang, Y.F.: Enhanced optical transmission through an array of compound unit with multiple concentric or eccentric annular apertures. Optik 123, 18201822 (2012).Google Scholar
28. Liu, J.P., Wang, L.L., Sun, B., Li, H.J., and Zhai, X.: Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity. Opt. Laser Technol. 69, 7176 (2015).Google Scholar
29. Sun, B., Wang, L.L., Wang, L., Zhai, X., Li, X.F., and Liu, J.Q.: Improved extraordinary optical transmission though single nano-slit by nano-defocusing. Opt. Laser Technol. 54, 214218 (2013).Google Scholar
30. Smith, D.R., Schultz, S., Markos, P., and Soukoulis, C.M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 95104195110 (2002).CrossRefGoogle Scholar
31. Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W., and Ward, C.A.: Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22, 10991119 (1983).Google Scholar
32. Zhang, S., Fan, W., Malloy, K.J., Brueck, S.R., Panoiu, N.C., and Osgood, R.M.: Near-infrared double negative metamaterials. J. Opt. Soc. Am. B 23, 434438 (2006).CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material 1

Download Chen et al. supplementary material(File)
File 252.7 KB