Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:08:27.692Z Has data issue: false hasContentIssue false

Fabrication of n-type flexible films with a double-layer structure by hybridizing Bi2Se3 and poly(vinyl alcohol)

Published online by Cambridge University Press:  18 July 2018

Akira Ohnuma*
Affiliation:
New Field Pioneering Division, Toyota Boshoku Corporation, Kariya, Aichi 448-8651, Japan
*
Address all correspondence to Akira Ohnuma at akira.onuma@toyota-boshoku.com
Get access

Abstract

Here we report a new type of n-type flexible film with a double-layer structure fabricated by hybridizing an n-type inorganic thermoelectric material, bismuth selenide (Bi2Se3), and an ordinary insulating polymer, poly(vinyl alcohol) (PVA). Flake-shaped Bi2Se3 nanoparticles (Bi2Se3 nanoflakes) modified with/without gold (Au) nanoparticles were distributed in the one side of PVA film with the particular arrangement, and the hybrid film showed a high Seebeck coefficient (−91 µV/K at room temperature) as an n-type flexible material. Our method is expected to be used for the design of flexible functional devices such as flexible thermoelectric modules.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Toshima, N., Imai, M., and Ichikawa, S.: Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth(III) telluride nanoparticles. J. Electron. Mater. 40, 898 (2011).Google Scholar
2.Toshima, N., Oshima, K., Anno, H., Nishinaka, T., Ichikawa, S., Iwata, A., and Shiraishi, Y.: Novel hybrid organic thermoelectric materials: three-component hybrid films consisting of a nanoparticle polymer complex, carbon nanotubes, and vinyl polymer. Adv. Mater. 27, 2246 (2015).Google Scholar
3.Li, J-F., Liu, W-S., Zhao, L-D., and Zhou, M.: High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152 (2010).Google Scholar
4.Luo, J., Billep, D., Waechtler, T., Otto, T., Toader, M., Gordan, O., Sheremet, E., Martin, J., Hietschold, M., Zahn, D.R.T., and Gessner, T.: Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. J. Mater. Chem. A 1, 7576 (2013).Google Scholar
5.Satterthwaite, C.B. and Ure, R.W. Jr.: Electrical and thermal properties of Bi2T3. Phys. Rev. 108, 1164 (1957).Google Scholar
6.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).Google Scholar
7.Min, Y., Roh, J.W., Yang, H., Park, M., Kim, S.I., Hwang, S., Lee, S.M., Lee, K.H., and Jeong, U.: Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 25, 1425 (2013).Google Scholar
8.Ohnuma, A. and Iwasaki, K.: Facile synthesis of semiconductor-metal hybrid nanoparticles with an anisotropic structure. MRS Online Proc. Library Arch. 1748, mrsf14-2037508 (2016).Google Scholar
9.Bubnova, O., Khan, Z.U., Malti, A., Braun, S., Fahlman, M., Berggren, M., and Crispin, X.: Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429 (2011).Google Scholar
10.Kim, G-H., Shao, L., Zhang, K., and Pipe, K.P.: Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719 (2013).Google Scholar
11.Kim, H.S., Kikuchi, K., Itoh, T., Iida, T., and Taya, M.: Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys. Mater. Sci. Eng. B 185, 45 (2014).Google Scholar
12.Nonoguchi, Y., Ohashi, K., Kanazawa, R., Ashiba, K., Hata, K., Nakagawa, T., Adachi, C., Tanase, T., and Kawai, T.: Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 3, 3344 (2013).Google Scholar
13.Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, G.J., Yang, R., and Koumoto, K.: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622 (2015).Google Scholar
14.Oshima, K., Shiraishi, Y., and Toshima, N.: Novel nanodispersed polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate): preparation and hybridization for n-type of organic thermoelectric materials. Chem. Lett. 44, 1185 (2015).Google Scholar
15.Fukumaru, T., Fujigaya, T., and Nakashima, N.: Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci. Rep. 5, 7951 (2015).Google Scholar
16.Ohnuma, A. and Iwasaki, K.: Development of n-type Ag-nanoparticles-modified carbon materials doped by triphenylphosphine. MRS Commun. 7, 570 (2017).Google Scholar
17.Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A.: Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681 (2007).Google Scholar
18.Xia, Y., Xiong, Y., Lim, B., and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60 (2009).Google Scholar
19.Ohnuma, A., Cho, E.C., Camargo, P.H.C., Au, L., Ohtani, B., and Xia, Y.: A facile synthesis of asymmetric hybrid colloidal particles. J. Am. Chem. Soc. 131, 1352 (2009).Google Scholar
20.Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D., and Xia, Y.: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669 (2011).Google Scholar
21.Yamamoto, H., Ohnuma, A., Ohtani, B., and Kozawa, T.: Controlled arrangement of nanoparticles capped with protecting ligand on Au nanopatterns. Microelectron. Eng. 121, 108 (2014).Google Scholar
22.Ohnuma, A., Yamamoto, H., Kozawa, T., and Ohtani, B.: Structural control of hybrid colloidal particle surface by plasma-etching treatment. Chem. Lett. 45, 979 (2016).Google Scholar
23.Ghosh, P., Han, G., De, M., Kim, C.K., and Rotello, V.M.: Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307 (2008).Google Scholar
24.Cardinal, C.M., Jung, Y.D., Ahn, K.H., and Francis, L.F.: Drying regime maps for particulate coatings. AIChE J. 56, 2769 (2010).Google Scholar
25.Amano, F., Nogami, K., Abe, R., and Ohtani, B.: Preparation and characterization of bismuth tungstate polycrystalline flake-ball particles for photocatalytic reactions. J. Phys. Chem. C 112, 9320 (2008).Google Scholar
26.Hu, L., Zhong, H., Zheng, X., Huang, Y., Zhang, P., and Chen, Q.: CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2, 986 (2012).Google Scholar
27.Park, S. and Hamad-Schifferli, K.: Evaluation of hydrodynamic size and zeta-potential of surface-modified au nanoparticle-DNA conjugates via Ferguson analysis. J. Phys. Chem. C 112, 7611 (2008).Google Scholar
28.Doane, T.L., Chuang, C-H., Hill, R.J., and Burda, C.: Nanoparticle ζ-potentials. Acc. Chem. Res. 45, 317 (2012).Google Scholar
Supplementary material: File

Ohnuma supplementary material

Figures S1-S5

Download Ohnuma supplementary material(File)
File 7.6 MB